Characterization and Transplantation of CD73-Positive Photoreceptors Isolated from Human iPSC-Derived Retinal Organoids
- PMID:30100409
- PMCID: PMC6135113
- DOI: 10.1016/j.stemcr.2018.07.005
Characterization and Transplantation of CD73-Positive Photoreceptors Isolated from Human iPSC-Derived Retinal Organoids
Abstract
Photoreceptor degenerative diseases are a major cause of blindness for which cell replacement is one of the most encouraging strategies. For stem cell-based therapy using human induced pluripotent stem cells (hiPSCs), it is crucial to obtain a homogenous photoreceptor cell population. We confirmed that the cell surface antigen CD73 is exclusively expressed in hiPSC-derived photoreceptors by generating a fluorescent cone rod homeobox (Crx) reporter hiPSC line using CRISPR/Cas9 genome editing. We demonstrated that CD73 targeting by magnetic-activated cell sorting (MACS) is an effective strategy to separate a safe population of transplantable photoreceptors. CD73+ photoreceptor precursors can be isolated in large numbers and transplanted into rat eyes, showing capacity to survive and mature in close proximity to host inner retina of a model of photoreceptor degeneration. These data demonstrate that CD73+ photoreceptor precursors hold great promise for a future safe clinical translation.
Keywords: cell sorting; cell therapy; iPSC; neurodegeneration; organoids; photoreceptor; retina; transplantation.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Figures








Similar articles
- Increased integration of transplanted CD73-positive photoreceptor precursors into adult mouse retina.Eberle D, Schubert S, Postel K, Corbeil D, Ader M.Eberle D, et al.Invest Ophthalmol Vis Sci. 2011 Aug 16;52(9):6462-71. doi: 10.1167/iovs.11-7399.Invest Ophthalmol Vis Sci. 2011.PMID:21743009
- CRX Expression in Pluripotent Stem Cell-Derived Photoreceptors Marks a Transplantable Subpopulation of Early Cones.Collin J, Zerti D, Queen R, Santos-Ferreira T, Bauer R, Coxhead J, Hussain R, Steel D, Mellough C, Ader M, Sernagor E, Armstrong L, Lako M.Collin J, et al.Stem Cells. 2019 May;37(5):609-622. doi: 10.1002/stem.2974. Epub 2019 Jan 30.Stem Cells. 2019.PMID:30681766Free PMC article.
- Subretinal transplantation of MACS purified photoreceptor precursor cells into the adult mouse retina.Eberle D, Santos-Ferreira T, Grahl S, Ader M.Eberle D, et al.J Vis Exp. 2014 Feb 22;(84):e50932. doi: 10.3791/50932.J Vis Exp. 2014.PMID:24638161Free PMC article.
- Deciphering retinal diseases through the generation of three dimensional stem cell-derived organoids: Concise Review.Artero Castro A, Rodríguez Jimenez FJ, Jendelova P, Erceg S.Artero Castro A, et al.Stem Cells. 2019 Dec;37(12):1496-1504. doi: 10.1002/stem.3089. Epub 2019 Oct 31.Stem Cells. 2019.PMID:31617949Free PMC article.Review.
- Organoid technology for retinal repair.Llonch S, Carido M, Ader M.Llonch S, et al.Dev Biol. 2018 Jan 15;433(2):132-143. doi: 10.1016/j.ydbio.2017.09.028. Epub 2017 Dec 25.Dev Biol. 2018.PMID:29291970Review.
Cited by
- A treatment within sight: challenges in the development of stem cell-derived photoreceptor therapies for retinal degenerative diseases.Beaver D, Limnios IJ.Beaver D, et al.Front Transplant. 2023 Sep 29;2:1130086. doi: 10.3389/frtra.2023.1130086. eCollection 2023.Front Transplant. 2023.PMID:38993872Free PMC article.Review.
- Development of Stem Cell Therapies for Retinal Degeneration.West EL, Ribeiro J, Ali RR.West EL, et al.Cold Spring Harb Perspect Biol. 2020 Aug 3;12(8):a035683. doi: 10.1101/cshperspect.a035683.Cold Spring Harb Perspect Biol. 2020.PMID:31818854Free PMC article.Review.
- Improved Ocular Tissue Models and Eye-On-A-Chip Technologies Will Facilitate Ophthalmic Drug Development.Wright CB, Becker SM, Low LA, Tagle DA, Sieving PA.Wright CB, et al.J Ocul Pharmacol Ther. 2020 Jan/Feb;36(1):25-29. doi: 10.1089/jop.2018.0139. Epub 2019 Jun 5.J Ocul Pharmacol Ther. 2020.PMID:31166829Free PMC article.Review.
- Establishing Functional Retina in a Dish: Progress and Promises of Induced Pluripotent Stem Cell-Based Retinal Neuron Differentiation.Wong NK, Yip SP, Huang CL.Wong NK, et al.Int J Mol Sci. 2023 Sep 4;24(17):13652. doi: 10.3390/ijms241713652.Int J Mol Sci. 2023.PMID:37686457Free PMC article.Review.
- Induced Pluripotent Stem Cells and Genome-Editing Tools in Determining Gene Function and Therapy for Inherited Retinal Disorders.Benati D, Leung A, Perdigao P, Toulis V, van der Spuy J, Recchia A.Benati D, et al.Int J Mol Sci. 2022 Dec 3;23(23):15276. doi: 10.3390/ijms232315276.Int J Mol Sci. 2022.PMID:36499601Free PMC article.Review.
References
- Belle M., Godefroy D., Dominici C., Heitz-Marchaland C., Zelina P., Hellal F., Bradke F., Chedotal A. A simple method for 3D analysis of immunolabeled axonal tracts in a transparent nervous system. Cell Rep. 2014;9:1191–1201. - PubMed
- Eberle D., Schubert S., Postel K., Corbeil D., Ader M. Increased integration of transplanted CD73-positive photoreceptor precursors into adult mouse retina. Invest. Opthalmol. Vis. Sci. 2011;52:6462. - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous