Molecular Basis of Bacterial Host Interactions by Gram-Positive Targeting Bacteriophages
- PMID:30060549
- PMCID: PMC6115969
- DOI: 10.3390/v10080397
Molecular Basis of Bacterial Host Interactions by Gram-Positive Targeting Bacteriophages
Abstract
The inherent ability of bacteriophages (phages) to infect specific bacterial hosts makes them ideal candidates to develop into antimicrobial agents for pathogen-specific remediation in food processing, biotechnology, and medicine (e.g., phage therapy). Conversely, phage contaminations of fermentation processes are a major concern to dairy and bioprocessing industries. The first stage of any successful phage infection is adsorption to a bacterial host cell, mediated by receptor-binding proteins (RBPs). As the first point of contact, the binding specificity of phage RBPs is the primary determinant of bacterial host range, and thus defines the remediative potential of a phage for a given bacterium. Co-evolution of RBPs and their bacterial receptors has forced endless adaptation cycles of phage-host interactions, which in turn has created a diverse array of phage adsorption mechanisms utilizing an assortment of RBPs. Over the last decade, these intricate mechanisms have been studied intensely using electron microscopy and X-ray crystallography, providing atomic-level details of this fundamental stage in the phage infection cycle. This review summarizes current knowledge surrounding the molecular basis of host interaction for various socioeconomically important Gram-positive targeting phage RBPs to their protein- and saccharide-based receptors. Special attention is paid to the abundant and best-characterizedSiphoviridae family of tailed phages. Unravelling these complex phage-host dynamics is essential to harness the full potential of phage-based technologies, or for generating novel strategies to combat industrial phage contaminations.
Keywords: Bacillus subtilis; Lactococcus lactis; Listeria monocytogenes; Staphylococcus aureus; bacteriophage; gram-positive bacteria; infection; phage technology; receptor-binding proteins.
Conflict of interest statement
The authors declare no conflict of interest.
Figures









Similar articles
- Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids.Bielmann R, Habann M, Eugster MR, Lurz R, Calendar R, Klumpp J, Loessner MJ.Bielmann R, et al.Virology. 2015 Mar;477:110-118. doi: 10.1016/j.virol.2014.12.035. Epub 2015 Feb 21.Virology. 2015.PMID:25708539
- Cryo-electron microscopy structure of lactococcal siphophage 1358 virion.Spinelli S, Bebeacua C, Orlov I, Tremblay D, Klaholz BP, Moineau S, Cambillau C.Spinelli S, et al.J Virol. 2014 Aug;88(16):8900-10. doi: 10.1128/JVI.01040-14. Epub 2014 May 28.J Virol. 2014.PMID:24872584Free PMC article.
- Molecular insights on the recognition of a Lactococcus lactis cell wall pellicle by the phage 1358 receptor binding protein.Farenc C, Spinelli S, Vinogradov E, Tremblay D, Blangy S, Sadovskaya I, Moineau S, Cambillau C.Farenc C, et al.J Virol. 2014 Jun;88(12):7005-15. doi: 10.1128/JVI.00739-14. Epub 2014 Apr 9.J Virol. 2014.PMID:24719416Free PMC article.
- Structural aspects of the interaction of dairy phages with their host bacteria.Mahony J, van Sinderen D.Mahony J, et al.Viruses. 2012 Sep;4(9):1410-24. doi: 10.3390/v4091410. Epub 2012 Aug 31.Viruses. 2012.PMID:23170165Free PMC article.Review.
- Conserved and Diverse Traits of Adhesion Devices fromSiphoviridae Recognizing Proteinaceous or Saccharidic Receptors.Goulet A, Spinelli S, Mahony J, Cambillau C.Goulet A, et al.Viruses. 2020 May 6;12(5):512. doi: 10.3390/v12050512.Viruses. 2020.PMID:32384698Free PMC article.Review.
Cited by
- Phages in Anaerobic Systems.Hernández S, Vives MJ.Hernández S, et al.Viruses. 2020 Sep 26;12(10):1091. doi: 10.3390/v12101091.Viruses. 2020.PMID:32993161Free PMC article.Review.
- Identification of Dual Receptor Binding Protein Systems in Lactococcal 936 Group Phages.Hayes S, Duhoo Y, Neve H, Murphy J, Noben JP, Franz CMAP, Cambillau C, Mahony J, Nauta A, van Sinderen D.Hayes S, et al.Viruses. 2018 Nov 27;10(12):668. doi: 10.3390/v10120668.Viruses. 2018.PMID:30486343Free PMC article.
- Structure and Topology Prediction of Phage Adhesion Devices Using AlphaFold2: The Case of TwoOenococcus oeni Phages.Goulet A, Cambillau C.Goulet A, et al.Microorganisms. 2021 Oct 14;9(10):2151. doi: 10.3390/microorganisms9102151.Microorganisms. 2021.PMID:34683471Free PMC article.
- Distantly related Alteromonas bacteriophages share tail fibers exhibiting properties of transient chaperone caps.Gonzalez-Serrano R, Rosselli R, Roda-Garcia JJ, Martin-Cuadrado AB, Rodriguez-Valera F, Dunne M.Gonzalez-Serrano R, et al.Nat Commun. 2023 Oct 16;14(1):6517. doi: 10.1038/s41467-023-42114-8.Nat Commun. 2023.PMID:37845226Free PMC article.
- Bioengineered materials with selective antimicrobial toxicity in biomedicine.Makvandi P, Song H, Yiu CKY, Sartorius R, Zare EN, Rabiee N, Wu WX, Paiva-Santos AC, Wang XD, Yu CZ, Tay FR.Makvandi P, et al.Mil Med Res. 2023 Feb 24;10(1):8. doi: 10.1186/s40779-023-00443-1.Mil Med Res. 2023.PMID:36829246Free PMC article.Review.
References
- Duckworth D. History and Basic Properties of Bacterial Viruses. [(accessed on 1 July 2018)]; Available online:https://ci.nii.ac.jp/naid/10020227033/#cit.
Publication types
MeSH terms
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials