Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

BioMed Central full text link BioMed Central Free PMC article
Full text links

Actions

Share

.2018 Jun 19;11(1):357.
doi: 10.1186/s13071-018-2940-3.

Can the intake of antiparasitic secondary metabolites explain the low prevalence of hemoparasites among wild Psittaciformes?

Affiliations

Can the intake of antiparasitic secondary metabolites explain the low prevalence of hemoparasites among wild Psittaciformes?

Juan F Masello et al. Parasit Vectors..

Abstract

Background: Parasites can exert selection pressure on their hosts through effects on survival, on reproductive success, on sexually selected ornament, with important ecological and evolutionary consequences, such as changes in population viability. Consequently, hemoparasites have become the focus of recent avian studies. Infection varies significantly among taxa. Various factors might explain the differences in infection among taxa, including habitat, climate, host density, the presence of vectors, life history and immune defence. Feeding behaviour can also be relevant both through increased exposure to vectors and consumption of secondary metabolites with preventative or therapeutic effects that can reduce parasite load. However, the latter has been little investigated. Psittaciformes (parrots and cockatoos) are a good model to investigate these topics, as they are known to use biological control against ectoparasites and to feed on toxic food. We investigated the presence of avian malaria parasites (Plasmodium), intracellular haemosporidians (Haemoproteus, Leucocytozoon), unicellular flagellate protozoans (Trypanosoma) and microfilariae in 19 Psittaciformes species from a range of habitats in the Indo-Malayan, Australasian and Neotropical regions. We gathered additional data on hemoparasites in wild Psittaciformes from the literature. We considered factors that may control the presence of hemoparasites in the Psittaciformes, compiling information on diet, habitat, and climate. Furthermore, we investigated the role of diet in providing antiparasitic secondary metabolites that could be used as self-medication to reduce parasite load.

Results: We found hemoparasites in only two of 19 species sampled. Among them, all species that consume at least one food item known for its secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, were free from hemoparasites. In contrast, the infected parrots do not consume food items with antimalarial or even general antiparasitic properties. We found that the two infected species in this study consumed omnivorous diets. When we combined our data with data from studies previously investigating blood parasites in wild parrots, the positive relationship between omnivorous diets and hemoparasite infestation was confirmed. Individuals from open habitats were less infected than those from forests.

Conclusions: The consumption of food items known for their secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, as well as the higher proportion of infected species among omnivorous parrots, could explain the low prevalence of hemoparasites reported in many vertebrates.

Keywords: Antiparasitic metabolites; Blood parasites; Cacatuidae; Haemoparasites; Herbivorous; Omnivorous; Plant secondary metabolites; Psittacidae; Self-medication.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

The present study was carried out under permission of different national agencies. For population number see Table 1. Permits and organizations: 1 (2013-0001, Department of Environment and Natural Resources, MIMAROPA region, Philippines); 2, 3, 4, 5, 10 and 11 (1007-2008, 2017-2011, 2425-2012, 1142-2013 of Province Sud, New Caledonia); 6, 7, 8 and 9 (Department of Conservation, 19621 FAU, New Zealand); 12, 13 and 14 (530/08, 036/09 and 1239/11, Dirección General de Biodiversidad y Áreas Protegidas, Ministerio de Desarrollo Rural, Agropecuario y Medio Ambiente, Bolivia); 15, 24 and 25 (Resol. 131/2005, D.P.MAyRN, Jujuy, Argentina, and 023-03 Dirección de Parques y Ecología, Chaco, Argentina); 16 (Ministerio del Ambiente, Venezuela); 17 and 25 (519225, IBAMA, Brazil); 18 and 19 (143089-DF-98, Dirección de Fauna de la Provincia de Río Negro, Argentina); 20 (permits No. 5193 and No. 6295 issued by the Servicio Agrıcola y Ganadero, Chile); 21 (Disp. 008-2015, Nota 822-2015, SayDS, Río Negro, Argentina); 22 and 23 (27051, SISBIO, Brazil).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

References

    1. Møller AP. Parasitism and the evolution of host life history. In: Clayton DH, Moore J, editors. Host-parasite evolution: general principles and avian models. Oxford: Oxford University Press; 1997. pp. 105–127.
    1. Merino S, Moreno J, Sanz JJ, Arriero E. Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus) Proc R Soc B. 2000;267:2507–2510. doi: 10.1098/rspb.2000.1312. - DOI - PMC - PubMed
    1. Scheuerlein A, Ricklefs RE. Prevalence of blood parasites in European passeriform birds. Proc R Soc B. 2004;271:1363–1370. doi: 10.1098/rspb.2004.2726. - DOI - PMC - PubMed
    1. Watson MJ. What drives population-level effects of parasites? Meta-analysis meets life-history. Int J Parasitol. 2013;2:190–196. - PMC - PubMed
    1. Christe P, Møller AP, González G, de Lope F. Intraseasonal ariation in immune defence, body mass and hematocrit in adult house martins Delichon urbica. J Avian Biol. 2002;33:321–325. doi: 10.1034/j.1600-048X.2002.330317.x. - DOI

MeSH terms

Substances

Related information

Grants and funding

LinkOut - more resources

Full text links
BioMed Central full text link BioMed Central Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp