Real-space refinement in PHENIX for cryo-EM and crystallography
- PMID:29872004
- PMCID: PMC6096492
- DOI: 10.1107/S2059798318006551
Real-space refinement in PHENIX for cryo-EM and crystallography
Abstract
This article describes the implementation of real-space refinement in the phenix.real_space_refine program from the PHENIX suite. The use of a simplified refinement target function enables very fast calculation, which in turn makes it possible to identify optimal data-restraint weights as part of routine refinements with little runtime cost. Refinement of atomic models against low-resolution data benefits from the inclusion of as much additional information as is available. In addition to standard restraints on covalent geometry, phenix.real_space_refine makes use of extra information such as secondary-structure and rotamer-specific restraints, as well as restraints or constraints on internal molecular symmetry. The re-refinement of 385 cryo-EM-derived models available in the Protein Data Bank at resolutions of 6 Å or better shows significant improvement of the models and of the fit of these models to the target maps.
Keywords: PHENIX; atomic-centered targets; cryo-EM; crystallography; map interpolation; real-space refinement.
open access.
Figures









Similar articles
- CERES: a cryo-EM re-refinement system for continuous improvement of deposited models.Liebschner D, Afonine PV, Moriarty NW, Poon BK, Chen VB, Adams PD.Liebschner D, et al.Acta Crystallogr D Struct Biol. 2021 Jan 1;77(Pt 1):48-61. doi: 10.1107/S2059798320015879. Epub 2021 Jan 1.Acta Crystallogr D Struct Biol. 2021.PMID:33404525Free PMC article.
- Real-space quantum-based refinement for cryo-EM: Q|R#3.Wang L, Kruse H, Sobolev OV, Moriarty NW, Waller MP, Afonine PV, Biczysko M.Wang L, et al.Acta Crystallogr D Struct Biol. 2020 Dec 1;76(Pt 12):1184-1191. doi: 10.1107/S2059798320013194. Epub 2020 Nov 19.Acta Crystallogr D Struct Biol. 2020.PMID:33263324
- New tools for the analysis and validation of cryo-EM maps and atomic models.Afonine PV, Klaholz BP, Moriarty NW, Poon BK, Sobolev OV, Terwilliger TC, Adams PD, Urzhumtsev A.Afonine PV, et al.Acta Crystallogr D Struct Biol. 2018 Sep 1;74(Pt 9):814-840. doi: 10.1107/S2059798318009324. Epub 2018 Sep 3.Acta Crystallogr D Struct Biol. 2018.PMID:30198894Free PMC article.
- Current approaches for the fitting and refinement of atomic models into cryo-EM maps using CCP-EM.Nicholls RA, Tykac M, Kovalevskiy O, Murshudov GN.Nicholls RA, et al.Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):492-505. doi: 10.1107/S2059798318007313. Epub 2018 May 30.Acta Crystallogr D Struct Biol. 2018.PMID:29872001Free PMC article.Review.
- Refinement of Atomic Structures Against cryo-EM Maps.Murshudov GN.Murshudov GN.Methods Enzymol. 2016;579:277-305. doi: 10.1016/bs.mie.2016.05.033. Epub 2016 Jun 24.Methods Enzymol. 2016.PMID:27572731Review.
Cited by
- A conserved glutathione binding site in poliovirus is a target for antivirals and vaccine stabilisation.Bahar MW, Nasta V, Fox H, Sherry L, Grehan K, Porta C, Macadam AJ, Stonehouse NJ, Rowlands DJ, Fry EE, Stuart DI.Bahar MW, et al.Commun Biol. 2022 Nov 25;5(1):1293. doi: 10.1038/s42003-022-04252-5.Commun Biol. 2022.PMID:36434067Free PMC article.
- Analytic modeling of inhomogeneous-resolution maps in cryo-electron microscopy and crystallography.Urzhumtsev A, Lunin VY.Urzhumtsev A, et al.IUCrJ. 2022 Sep 28;9(Pt 6):728-734. doi: 10.1107/S2052252522008260. eCollection 2022 Nov 1.IUCrJ. 2022.PMID:36381145Free PMC article.
- Insights into Actin Isoform-Specific Interactions with Myosin via Computational Analysis.Yu CJ, Park YH, An MY, Ryu B, Jung HS.Yu CJ, et al.Molecules. 2024 Jun 23;29(13):2992. doi: 10.3390/molecules29132992.Molecules. 2024.PMID:38998944Free PMC article.
- Cryo-EM structures reveal two distinct conformational states in a picornavirus cell entry intermediate.Shah PNM, Filman DJ, Karunatilaka KS, Hesketh EL, Groppelli E, Strauss M, Hogle JM.Shah PNM, et al.PLoS Pathog. 2020 Sep 30;16(9):e1008920. doi: 10.1371/journal.ppat.1008920. eCollection 2020 Sep.PLoS Pathog. 2020.PMID:32997730Free PMC article.
- Structural impact of K63 ubiquitin on yeast translocating ribosomes under oxidative stress.Zhou Y, Kastritis PL, Dougherty SE, Bouvette J, Hsu AL, Burbaum L, Mosalaganti S, Pfeffer S, Hagen WJH, Förster F, Borgnia MJ, Vogel C, Beck M, Bartesaghi A, Silva GM.Zhou Y, et al.Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22157-22166. doi: 10.1073/pnas.2005301117. Epub 2020 Aug 27.Proc Natl Acad Sci U S A. 2020.PMID:32855298Free PMC article.
References
- Adams, P. D. et al. (2010). Acta Cryst. D66, 213–221. - PubMed
- Afonine, P. V., Headd, J. J., Terwilliger, T. C. & Adams, P. D. (2013). Comput. Crystallogr. Newsl. 4, 43–44.https://www.phenix-online.org/newsletter/CCN_2013_07.pdf.
- Afonine, P. V., Klaholz, B. K., Moriarty, N. W., Poon, B. K., Sobolev, O. V., Terwilliger, T. C., Adams, P. D. & Urzhumtsev, A. (2018). bioRxiv.https://doi.org/10.1101/249607.