Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts
- PMID:29844945
- PMCID: PMC5967329
- DOI: 10.1038/s41413-018-0019-6
Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts
Abstract
The skeleton is a dynamic organ that is constantly remodeled. Proteins secreted from bone cells, namely osteoblasts, osteocytes, and osteoclasts exert regulation on osteoblastogenesis, osteclastogenesis, and angiogenesis in a paracrine manner. Osteoblasts secrete a range of different molecules including RANKL/OPG, M-CSF, SEMA3A, WNT5A, and WNT16 that regulate osteoclastogenesis. Osteoblasts also produce VEGFA that stimulates osteoblastogenesis and angiogenesis. Osteocytes produce sclerostin (SOST) that inhibits osteoblast differentiation and promotes osteoclast differentiation. Osteoclasts secrete factors including BMP6, CTHRC1, EFNB2, S1P, WNT10B, SEMA4D, and CT-1 that act on osteoblasts and osteocytes, and thereby influenceaA osteogenesis. Osteoclast precursors produce the angiogenic factor PDGF-BB to promote the formation of Type H vessels, which then stimulate osteoblastogenesis. Besides, the evidences over the past decades show that at least three hormones or "osteokines" from bone cells have endocrine functions. FGF23 is produced by osteoblasts and osteocytes and can regulate phosphate metabolism. Osteocalcin (OCN) secreted by osteoblasts regulates systemic glucose and energy metabolism, reproduction, and cognition. Lipocalin-2 (LCN2) is secreted by osteoblasts and can influence energy metabolism by suppressing appetite in the brain. We review the recent progresses in the paracrine and endocrine functions of the secretory proteins of osteoblasts, osteocytes, and osteoclasts, revealing connections of the skeleton with other tissues and providing added insights into the pathogenesis of degenerative diseases affecting multiple organs and the drug discovery process.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
- Osteoblast-Osteoclast Communication and Bone Homeostasis.Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH.Kim JM, et al.Cells. 2020 Sep 10;9(9):2073. doi: 10.3390/cells9092073.Cells. 2020.PMID:32927921Free PMC article.Review.
- Paracrine and endocrine functions of osteocytes.Michigami T.Michigami T.Clin Pediatr Endocrinol. 2023;32(1):1-10. doi: 10.1297/cpe.2022-0053. Epub 2022 Sep 19.Clin Pediatr Endocrinol. 2023.PMID:36761497Free PMC article.Review.
- Sclerostin and Osteocalcin: Candidate Bone-Produced Hormones.Wang JS, Mazur CM, Wein MN.Wang JS, et al.Front Endocrinol (Lausanne). 2021 Mar 10;12:584147. doi: 10.3389/fendo.2021.584147. eCollection 2021.Front Endocrinol (Lausanne). 2021.PMID:33776907Free PMC article.Review.
- Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse.Cao JJ, Wronski TJ, Iwaniec U, Phleger L, Kurimoto P, Boudignon B, Halloran BP.Cao JJ, et al.J Bone Miner Res. 2005 Sep;20(9):1659-68. doi: 10.1359/JBMR.050503. Epub 2005 May 2.J Bone Miner Res. 2005.PMID:16059637
- Osteoclast differentiation by RANKL and OPG signaling pathways.Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, Kobayashi Y, Furuya Y, Yasuda H, Fukuda C, Tsuda E.Udagawa N, et al.J Bone Miner Metab. 2021 Jan;39(1):19-26. doi: 10.1007/s00774-020-01162-6. Epub 2020 Oct 20.J Bone Miner Metab. 2021.PMID:33079279Review.
Cited by
- Promoter methylation and expression pattern ofDLX3,ATF4, andFRA1 genes during osteoblastic differentiation of adipose-derived mesenchymal stem cells.Rahimzadeh S, Rahbarghazi R, Aslani S, Rajabi H, Latifi Z, Farshdousti Hagh M, Nourazarian A, Nozad Charoudeh H, Nouri M, Abhari A.Rahimzadeh S, et al.Bioimpacts. 2020;10(4):243-250. doi: 10.34172/bi.2020.31. Epub 2019 Nov 25.Bioimpacts. 2020.PMID:32983940Free PMC article.
- Antioxidant PDA-PEG nanoparticles alleviate early osteoarthritis by inhibiting osteoclastogenesis and angiogenesis in subchondral bone.Wu Z, Yuan K, Zhang Q, Guo JJ, Yang H, Zhou F.Wu Z, et al.J Nanobiotechnology. 2022 Nov 16;20(1):479. doi: 10.1186/s12951-022-01697-y.J Nanobiotechnology. 2022.PMID:36384720Free PMC article.
- Skeleton-vasculature chain reaction: a novel insight into the mystery of homeostasis.Chen M, Li Y, Huang X, Gu Y, Li S, Yin P, Zhang L, Tang P.Chen M, et al.Bone Res. 2021 Mar 22;9(1):21. doi: 10.1038/s41413-021-00138-0.Bone Res. 2021.PMID:33753717Free PMC article.Review.
- Mechanical loading on osteocytes regulates thermogenesis homeostasis of brown adipose tissue by influencing osteocyte-derived exosomes.Yuze Ma, Liu N, Shao X, Shi T, Lin J, Liu B, Shen T, Guo B, Jiang Q.Yuze Ma, et al.J Orthop Translat. 2024 Jul 26;48:39-52. doi: 10.1016/j.jot.2024.06.012. eCollection 2024 Sep.J Orthop Translat. 2024.PMID:39087139Free PMC article.
- Rare earth smart nanomaterials for bone tissue engineering and implantology: Advances, challenges, and prospects.Natarajan D, Ye Z, Wang L, Ge L, Pathak JL.Natarajan D, et al.Bioeng Transl Med. 2021 Dec 1;7(1):e10262. doi: 10.1002/btm2.10262. eCollection 2022 Jan.Bioeng Transl Med. 2021.PMID:35111954Free PMC article.Review.
References
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous