An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder
- PMID:29700473
- PMCID: PMC5961723
- DOI: 10.1038/s41588-018-0107-y
An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder
Abstract
Genomic association studies of common or rare protein-coding variation have established robust statistical approaches to account for multiple testing. Here we present a comparable framework to evaluate rare and de novo noncoding single-nucleotide variants, insertion/deletions, and all classes of structural variation from whole-genome sequencing (WGS). Integrating genomic annotations at the level of nucleotides, genes, and regulatory regions, we define 51,801 annotation categories. Analyses of 519 autism spectrum disorder families did not identify association with any categories after correction for 4,123 effective tests. Without appropriate correction, biologically plausible associations are observed in both cases and controls. Despite excluding previously identified gene-disrupting mutations, coding regions still exhibited the strongest associations. Thus, in autism, the contribution of de novo noncoding variation is probably modest in comparison to that of de novo coding variants. Robust results from future WGS studies will require large cohorts and comprehensive analytical strategies that consider the substantial multiple-testing burden.
Figures





Comment in
- Straws in a haystack.[No authors listed][No authors listed]Nat Genet. 2018 May;50(5):631. doi: 10.1038/s41588-018-0125-9.Nat Genet. 2018.PMID:29700466No abstract available.
- Sizing up whole-genome sequencing studies of common diseases.Wray NR, Gratten J.Wray NR, et al.Nat Genet. 2018 May;50(5):635-637. doi: 10.1038/s41588-018-0113-0.Nat Genet. 2018.PMID:29700468No abstract available.
Similar articles
- Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder.C Yuen RK, Merico D, Bookman M, L Howe J, Thiruvahindrapuram B, Patel RV, Whitney J, Deflaux N, Bingham J, Wang Z, Pellecchia G, Buchanan JA, Walker S, Marshall CR, Uddin M, Zarrei M, Deneault E, D'Abate L, Chan AJ, Koyanagi S, Paton T, Pereira SL, Hoang N, Engchuan W, Higginbotham EJ, Ho K, Lamoureux S, Li W, MacDonald JR, Nalpathamkalam T, Sung WW, Tsoi FJ, Wei J, Xu L, Tasse AM, Kirby E, Van Etten W, Twigger S, Roberts W, Drmic I, Jilderda S, Modi BM, Kellam B, Szego M, Cytrynbaum C, Weksberg R, Zwaigenbaum L, Woodbury-Smith M, Brian J, Senman L, Iaboni A, Doyle-Thomas K, Thompson A, Chrysler C, Leef J, Savion-Lemieux T, Smith IM, Liu X, Nicolson R, Seifer V, Fedele A, Cook EH, Dager S, Estes A, Gallagher L, Malow BA, Parr JR, Spence SJ, Vorstman J, Frey BJ, Robinson JT, Strug LJ, Fernandez BA, Elsabbagh M, Carter MT, Hallmayer J, Knoppers BM, Anagnostou E, Szatmari P, Ring RH, Glazer D, Pletcher MT, Scherer SW.C Yuen RK, et al.Nat Neurosci. 2017 Apr;20(4):602-611. doi: 10.1038/nn.4524. Epub 2017 Mar 6.Nat Neurosci. 2017.PMID:28263302Free PMC article.
- Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder.An JY, Lin K, Zhu L, Werling DM, Dong S, Brand H, Wang HZ, Zhao X, Schwartz GB, Collins RL, Currall BB, Dastmalchi C, Dea J, Duhn C, Gilson MC, Klei L, Liang L, Markenscoff-Papadimitriou E, Pochareddy S, Ahituv N, Buxbaum JD, Coon H, Daly MJ, Kim YS, Marth GT, Neale BM, Quinlan AR, Rubenstein JL, Sestan N, State MW, Willsey AJ, Talkowski ME, Devlin B, Roeder K, Sanders SJ.An JY, et al.Science. 2018 Dec 14;362(6420):eaat6576. doi: 10.1126/science.aat6576.Science. 2018.PMID:30545852Free PMC article.
- An integrative analysis of non-coding regulatory DNA variations associated with autism spectrum disorder.Williams SM, An JY, Edson J, Watts M, Murigneux V, Whitehouse AJO, Jackson CJ, Bellgrove MA, Cristino AS, Claudianos C.Williams SM, et al.Mol Psychiatry. 2019 Nov;24(11):1707-1719. doi: 10.1038/s41380-018-0049-x. Epub 2018 Apr 27.Mol Psychiatry. 2019.PMID:29703944
- Genetic architecture of autism spectrum disorder: Lessons from large-scale genomic studies.Choi L, An JY.Choi L, et al.Neurosci Biobehav Rev. 2021 Sep;128:244-257. doi: 10.1016/j.neubiorev.2021.06.028. Epub 2021 Jun 21.Neurosci Biobehav Rev. 2021.PMID:34166716Review.
- Voltage-gated Calcium Channels and Autism Spectrum Disorders.Breitenkamp AF, Matthes J, Herzig S.Breitenkamp AF, et al.Curr Mol Pharmacol. 2015;8(2):123-32. doi: 10.2174/1874467208666150507105235.Curr Mol Pharmacol. 2015.PMID:25966693Review.
Cited by
- Unified inference of missense variant effects and gene constraints in the human genome.Huang YF.Huang YF.PLoS Genet. 2020 Jul 15;16(7):e1008922. doi: 10.1371/journal.pgen.1008922. eCollection 2020 Jul.PLoS Genet. 2020.PMID:32667917Free PMC article.
- A Chromatin Accessibility Atlas of the Developing Human Telencephalon.Markenscoff-Papadimitriou E, Whalen S, Przytycki P, Thomas R, Binyameen F, Nowakowski TJ, Kriegstein AR, Sanders SJ, State MW, Pollard KS, Rubenstein JL.Markenscoff-Papadimitriou E, et al.Cell. 2020 Aug 6;182(3):754-769.e18. doi: 10.1016/j.cell.2020.06.002. Epub 2020 Jun 30.Cell. 2020.PMID:32610082Free PMC article.
- Next-Generation Sequencing in Autism Spectrum Disorder.Sanders SJ.Sanders SJ.Cold Spring Harb Perspect Med. 2019 Aug 1;9(8):a026872. doi: 10.1101/cshperspect.a026872.Cold Spring Harb Perspect Med. 2019.PMID:30420340Free PMC article.Review.
- Pedigree-based estimation of human mobile element retrotransposition rates.Feusier J, Watkins WS, Thomas J, Farrell A, Witherspoon DJ, Baird L, Ha H, Xing J, Jorde LB.Feusier J, et al.Genome Res. 2019 Oct;29(10):1567-1577. doi: 10.1101/gr.247965.118.Genome Res. 2019.PMID:31575651Free PMC article.
- The state of research on the genetics of autism spectrum disorder: methodological, clinical and conceptual progress.Arnett AB, Trinh S, Bernier RA.Arnett AB, et al.Curr Opin Psychol. 2019 Jun;27:1-5. doi: 10.1016/j.copsyc.2018.07.004. Epub 2018 Jul 21.Curr Opin Psychol. 2019.PMID:30059871Free PMC article.Review.
References
Publication types
MeSH terms
Substances
Related information
Grants and funding
- R01 MH110928/MH/NIMH NIH HHS/United States
- R37 MH057881/MH/NIMH NIH HHS/United States
- U01 MH105575/MH/NIMH NIH HHS/United States
- U01 MH100229/MH/NIMH NIH HHS/United States
- K99 DE026824/DE/NIDCR NIH HHS/United States
- U01 MH111660/MH/NIMH NIH HHS/United States
- U01 MH100239/MH/NIMH NIH HHS/United States
- R35 NS097305/NS/NINDS NIH HHS/United States
- U01 MH111658/MH/NIMH NIH HHS/United States
- U01 MH111661/MH/NIMH NIH HHS/United States
- P01 GM061354/GM/NIGMS NIH HHS/United States
- R01 MH109901/MH/NIMH NIH HHS/United States
- R01 HD081256/HD/NICHD NIH HHS/United States
- U01 MH111662/MH/NIMH NIH HHS/United States
- R01 MH109904/MH/NIMH NIH HHS/United States
- R01 MH109900/MH/NIMH NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical