Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

American Chemical Society full text link American Chemical SocietyeScholarship, University of California - Access Free Full Text full text link eScholarship, University of California - Access Free Full Text
Full text links

Actions

.2018 May 7;57(9):5352-5363.
doi: 10.1021/acs.inorgchem.8b00345. Epub 2018 Apr 6.

Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO)

Affiliations
Free article

Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO)

Morgan P Kelley et al. Inorg Chem..
Free article

Abstract

The hydroxypyridinone ligand 3,4,3-LI(1,2-HOPO) is a promising agent for biological decorporation of radionuclides, and allows spectroscopic detection of many lanthanide (Ln) and actinide (An) species via sensitized luminescence. Despite the manifest uses of this ligand, the structural and thermodynamic properties of its complexes across the An series remain understudied. Theoretical investigations of the binding of An(III) and An(IV) ions, from actinium to einsteinium, by the 3,4,3-LI(1,2-HOPO) ligand, as well as experimental extended X-ray absorption fine structure (EXAFS) studies on the trivalent americium, curium, and californium complexes were employed to address the resulting structures, thermodynamic parameters, redox properties, and corresponding electronic configurations. An(IV) ions were found to form much stronger complexes than An(III) ions, consistent with experimental measurements. Complexation of both An(III) and An(IV) ions generally becomes more favorable for heavier actinides, reflecting increased energy degeneracy driven covalency and concomitant orbital mixing between the 5f orbitals of the An ions and the π orbitals of the ligand. Notably, the ability of this ligand to either accept or donate electron density as needed from its pyridine rings is found to be key to its extraordinary stability across the actinide series.

PubMed Disclaimer

LinkOut - more resources

Full text links
American Chemical Society full text link American Chemical SocietyeScholarship, University of California - Access Free Full Text full text link eScholarship, University of California - Access Free Full Text
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp