A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817
- PMID:29261643
- DOI: 10.1038/nature25452
A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817
Abstract
GW170817 was the first gravitational-wave detection of a binary neutron-star merger. It was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 40 megaparsecs. It has been proposed that the observed γ-ray, X-ray and radio emission is due to an ultra-relativistic jet being launched during the merger (and successfully breaking out of the surrounding material), directed away from our line of sight (off-axis). The presence of such a jet is predicted from models that posit neutron-star mergers as the drivers of short hard-γ-ray bursts. Here we report that the radio light curve of GW170817 has no direct signature of the afterglow of an off-axis jet. Although we cannot completely rule out the existence of a jet directed away from the line of sight, the observed γ-ray emission could not have originated from such a jet. Instead, the radio data require the existence of a mildly relativistic wide-angle outflow moving towards us. This outflow could be the high-velocity tail of the neutron-rich material that was ejected dynamically during the merger, or a cocoon of material that breaks out when a jet launched during the merger transfers its energy to the dynamical ejecta. Because the cocoon model explains the radio light curve of GW170817, as well as the γ-ray and X-ray emission (and possibly also the ultraviolet and optical emission), it is the model that is most consistent with the observational data. Cocoons may be a ubiquitous phenomenon produced in neutron-star mergers, giving rise to a hitherto unidentified population of radio, ultraviolet, X-ray and γ-ray transients in the local Universe.
Comment in
- A chirp, a roar and a whisper.Wijers R.Wijers R.Nature. 2018 Feb 8;554(7691):178-179. doi: 10.1038/d41586-018-01570-9.Nature. 2018.PMID:29420500No abstract available.
Similar articles
- Superluminal motion of a relativistic jet in the neutron-star merger GW170817.Mooley KP, Deller AT, Gottlieb O, Nakar E, Hallinan G, Bourke S, Frail DA, Horesh A, Corsi A, Hotokezaka K.Mooley KP, et al.Nature. 2018 Sep;561(7723):355-359. doi: 10.1038/s41586-018-0486-3. Epub 2018 Sep 5.Nature. 2018.PMID:30185904
- Late Time Afterglow Observations Reveal a Collimated Relativistic Jet in the Ejecta of the Binary Neutron Star Merger GW170817.Lazzati D, Perna R, Morsony BJ, Lopez-Camara D, Cantiello M, Ciolfi R, Giacomazzo B, Workman JC.Lazzati D, et al.Phys Rev Lett. 2018 Jun 15;120(24):241103. doi: 10.1103/PhysRevLett.120.241103.Phys Rev Lett. 2018.PMID:29956987
- A radio counterpart to a neutron star merger.Hallinan G, Corsi A, Mooley KP, Hotokezaka K, Nakar E, Kasliwal MM, Kaplan DL, Frail DA, Myers ST, Murphy T, De K, Dobie D, Allison JR, Bannister KW, Bhalerao V, Chandra P, Clarke TE, Giacintucci S, Ho AYQ, Horesh A, Kassim NE, Kulkarni SR, Lenc E, Lockman FJ, Lynch C, Nichols D, Nissanke S, Palliyaguru N, Peters WM, Piran T, Rana J, Sadler EM, Singer LP.Hallinan G, et al.Science. 2017 Dec 22;358(6370):1579-1583. doi: 10.1126/science.aap9855. Epub 2017 Oct 16.Science. 2017.PMID:29038372
- Neutrino transport in general relativistic neutron star merger simulations.Foucart F.Foucart F.Living Rev Comput Astrophys. 2023;9(1):1. doi: 10.1007/s41115-023-00016-y. Epub 2023 Feb 23.Living Rev Comput Astrophys. 2023.PMID:36852009Free PMC article.Review.
- Kilonovae.Metzger BD.Metzger BD.Living Rev Relativ. 2020;23(1):1. doi: 10.1007/s41114-019-0024-0. Epub 2019 Dec 16.Living Rev Relativ. 2020.PMID:31885490Free PMC article.Review.
Cited by
- A luminous blue kilonova and an off-axis jet from a compact binary merger at z = 0.1341.Troja E, Ryan G, Piro L, van Eerten H, Cenko SB, Yoon Y, Lee SK, Im M, Sakamoto T, Gatkine P, Kutyrev A, Veilleux S.Troja E, et al.Nat Commun. 2018 Oct 16;9(1):4089. doi: 10.1038/s41467-018-06558-7.Nat Commun. 2018.PMID:30327476Free PMC article.
- Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA.Abbott BP, Abbott R, Abbott TD, Abraham S, Acernese F, Ackley K, Adams C, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P, Akutsu T, Allen G, Allocca A, Aloy MA, Altin PA, Amato A, Ananyeva A, Anderson SB, Anderson WG, Ando M, Angelova SV, Antier S, Appert S, Arai K, Arai K, Arai Y, Araki S, Araya A, Araya MC, Areeda JS, Arène M, Aritomi N, Arnaud N, Arun KG, Ascenzi S, Ashton G, Aso Y, Aston SM, Astone P, Aubin F, Aufmuth P, AultONeal K, Austin C, Avendano V, Avila-Alvarez A, Babak S, Bacon P, Badaracco F, Bader MKM, Bae SW, Bae YB, Baiotti L, Bajpai R, Baker PT, Baldaccini F, Ballardin G, Ballmer SW, Banagiri S, Barayoga JC, Barclay SE, Barish BC, Barker D, Barkett K, Barnum S, Barone F, Barr B, Barsotti L, Barsuglia M, Barta D, Bartlett J, Barton MA, Bartos I, Bassiri R, Basti A, Bawaj M, Bayley JC, Bazzan M, Bécsy B, Bejger M, Belahcene I, Bell AS, Beniwal D, Berger BK, Bergmann G, Bernuzzi S, Bero JJ, Berry CPL, Bersanetti D, Bertolini A, Betzwieser J, Bhandare R, Bidler J, Bilenko IA, Bilgili SA, Billingsley G, Birch J, Birney R, Birnholtz O, Biscans S, Biscoveanu S, Bisht A, Bitossi M, Bizouard MA, Blackburn JK, Blair CD, Blair DG,…See abstract for full author list ➔Abbott BP, et al.Living Rev Relativ. 2020;23(1):3. doi: 10.1007/s41114-020-00026-9. Epub 2020 Sep 28.Living Rev Relativ. 2020.PMID:33015351Free PMC article.Review.
- Inference-Optimized AI and High Performance Computing for Gravitational Wave Detection at Scale.Chaturvedi P, Khan A, Tian M, Huerta EA, Zheng H.Chaturvedi P, et al.Front Artif Intell. 2022 Feb 16;5:828672. doi: 10.3389/frai.2022.828672. eCollection 2022.Front Artif Intell. 2022.PMID:35252850Free PMC article.
- Optical superluminal motion measurement in the neutron-star merger GW170817.Mooley KP, Anderson J, Lu W.Mooley KP, et al.Nature. 2022 Oct;610(7931):273-276. doi: 10.1038/s41586-022-05145-7. Epub 2022 Oct 12.Nature. 2022.PMID:36224419
- Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA.Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P, Akutsu T, Allen B, Allocca A, Altin PA, Ananyeva A, Anderson SB, Anderson WG, Ando M, Appert S, Arai K, Araya A, Araya MC, Areeda JS, Arnaud N, Arun KG, Asada H, Ascenzi S, Ashton G, Aso Y, Ast M, Aston SM, Astone P, Atsuta S, Aufmuth P, Aulbert C, Avila-Alvarez A, Awai K, Babak S, Bacon P, Bader MKM, Baiotti L, Baker PT, Baldaccini F, Ballardin G, Ballmer SW, Barayoga JC, Barclay SE, Barish BC, Barker D, Barone F, Barr B, Barsotti L, Barsuglia M, Barta D, Bartlett J, Barton MA, Bartos I, Bassiri R, Basti A, Batch JC, Baune C, Bavigadda V, Bazzan M, Bécsy B, Beer C, Bejger M, Belahcene I, Belgin M, Bell AS, Berger BK, Bergmann G, Berry CPL, Bersanetti D, Bertolini A, Betzwieser J, Bhagwat S, Bhandare R, Bilenko IA, Billingsley G, Billman CR, Birch J, Birney R, Birnholtz O, Biscans S, Bisht A, Bitossi M, Biwer C, Bizouard MA, Blackburn JK, Blackman J, Blair CD, Blair DG, Blair RM, Bloemen S, Bock O, Boer M, Bogaert G, Bohe A, Bondu F, Bonnand R, Boom BA, Bork R, Boschi V, Bose S, Bou…See abstract for full author list ➔Abbott BP, et al.Living Rev Relativ. 2018;21(1):3. doi: 10.1007/s41114-018-0012-9. Epub 2018 Apr 26.Living Rev Relativ. 2018.PMID:29725242Free PMC article.Review.
References
Publication types
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources