Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Wiley full text link Wiley
Full text links

Actions

Share

.2018 Jan;59(1):244-258.
doi: 10.1111/epi.13959. Epub 2017 Dec 5.

The interictal mesial temporal lobe epilepsy network

Affiliations

The interictal mesial temporal lobe epilepsy network

Suganya Karunakaran et al. Epilepsia.2018 Jan.

Abstract

Objective: Identification of patient-specific epileptogenic networks is critical to designing successful treatment strategies. Multiple noninvasive methods have been used to characterize epileptogenic networks. However, these methods lack the spatiotemporal resolution to allow precise localization of epileptiform activity. We used intracranial recordings, at much higher spatiotemporal resolution, across a cohort of patients with mesial temporal lobe epilepsy (MTLE) to delineate features common to their epileptogenic networks. We used interictal rather than seizure data because interictal spikes occur more frequently, providing us greater power for analyzing variances in the network.

Methods: Intracranial recordings from 10 medically refractory MTLE patients were analyzed. In each patient, hour-long recordings were selected for having frequent interictal discharges and no ictal events. For all possible pairs of electrodes, conditional probability of the occurrence of interictal spikes within a 150-millisecond bin was computed. These probabilities were used to construct a weighted graph between all electrodes, and the node degree was estimated. To assess the relationship of the highly connected regions in this network to the clinically identified seizure network, logistic regression was used to model the regions that were surgically resected using weighted node degree and number of spikes in each channel as factors. Lastly, the conditional spike probability was normalized and averaged across patients to visualize the MTLE network at group level.

Results: We generated the first graph of connectivity across a cohort of MTLE patients using interictal activity. The most consistent connections were hippocampus to amygdala, anterior fusiform cortex to hippocampus, and parahippocampal gyrus projections to amygdala. Additionally, the weighted node degree and number of spikes modeled the brain regions identified as seizure networks by clinicians.

Significance: Apart from identifying interictal measures that can model patient-specific epileptogenic networks, we also produce a group map of network connectivity from a cohort of MTLE patients.

Keywords: epileptogenic; hippocampus; interictal spikes; intracranial EEG.

Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Related information

LinkOut - more resources

Full text links
Wiley full text link Wiley
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp