Size- and speed-dependent mechanical behavior in living mammalian cytoplasm
- PMID:28827333
- PMCID: PMC5594647
- DOI: 10.1073/pnas.1702488114
Size- and speed-dependent mechanical behavior in living mammalian cytoplasm
Abstract
Active transport in the cytoplasm plays critical roles in living cell physiology. However, the mechanical resistance that intracellular compartments experience, which is governed by the cytoplasmic material property, remains elusive, especially its dependence on size and speed. Here we use optical tweezers to drag a bead in the cytoplasm and directly probe the mechanical resistance with varying sizea and speedV We introduce a method, combining the direct measurement and a simple scaling analysis, to reveal different origins of the size- and speed-dependent resistance in living mammalian cytoplasm. We show that the cytoplasm exhibits size-independent viscoelasticity as long as the effective strain rateV/a is maintained in a relatively low range (0.1 s-1 <V/a < 2 s-1) and exhibits size-dependent poroelasticity at a high effective strain rate regime (5 s-1 <V/a < 80 s-1). Moreover, the cytoplasmic modulus is found to be positively correlated with onlyV/a in the viscoelastic regime but also increases with the bead size at a constantV/a in the poroelastic regime. Based on our measurements, we obtain a full-scale state diagram of the living mammalian cytoplasm, which shows that the cytoplasm changes from a viscous fluid to an elastic solid, as well as from compressible material to incompressible material, with increases in the values of two dimensionless parameters, respectively. This state diagram is useful to understand the underlying mechanical nature of the cytoplasm in a variety of cellular processes over a broad range of speed and size scales.
Keywords: cell mechanics; cytoplasmic state diagram; poroelasticity; viscoelasticity.
Conflict of interest statement
The authors declare no conflict of interest.
Figures













Similar articles
- Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale.Su L, Wang M, Yin J, Ti F, Yang J, Ma C, Liu S, Lu TJ.Su L, et al.Acta Biomater. 2023 Jan 1;155:423-435. doi: 10.1016/j.actbio.2022.11.009. Epub 2022 Nov 11.Acta Biomater. 2023.PMID:36372152
- Intracellular mechanochemical waves in an active poroelastic model.Radszuweit M, Alonso S, Engel H, Bär M.Radszuweit M, et al.Phys Rev Lett. 2013 Mar 29;110(13):138102. doi: 10.1103/PhysRevLett.110.138102. Epub 2013 Mar 25.Phys Rev Lett. 2013.PMID:23581377
- Measurement of local viscoelasticity and forces in living cells by magnetic tweezers.Bausch AR, Möller W, Sackmann E.Bausch AR, et al.Biophys J. 1999 Jan;76(1 Pt 1):573-9. doi: 10.1016/S0006-3495(99)77225-5.Biophys J. 1999.PMID:9876170Free PMC article.
- Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers.Ketelaar T, van der Honing HS, Emons AM.Ketelaar T, et al.Biochem Soc Trans. 2010 Jun;38(3):823-8. doi: 10.1042/BST0380823.Biochem Soc Trans. 2010.PMID:20491670Review.
- Characterizing intracellular mechanics via optical tweezers-based microrheology.Vos BE, Muenker TM, Betz T.Vos BE, et al.Curr Opin Cell Biol. 2024 Jun;88:102374. doi: 10.1016/j.ceb.2024.102374. Epub 2024 Jun 1.Curr Opin Cell Biol. 2024.PMID:38824902Review.
Cited by
- Cell swelling, softening and invasion in a three-dimensional breast cancer model.Han YL, Pegoraro AF, Li H, Li K, Yuan Y, Xu G, Gu Z, Sun J, Hao Y, Gupta SK, Li Y, Tang W, Tang X, Teng L, Fredberg JJ, Guo M.Han YL, et al.Nat Phys. 2020 Jan;16(1):101-108. doi: 10.1038/s41567-019-0680-8. Epub 2019 Oct 21.Nat Phys. 2020.PMID:32905405Free PMC article.
- Effects of extracellular matrix viscoelasticity on cellular behaviour.Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ, Shenoy VB.Chaudhuri O, et al.Nature. 2020 Aug;584(7822):535-546. doi: 10.1038/s41586-020-2612-2. Epub 2020 Aug 26.Nature. 2020.PMID:32848221Free PMC article.Review.
- High stretchability, strength, and toughness of living cells enabled by hyperelastic vimentin intermediate filaments.Hu J, Li Y, Hao Y, Zheng T, Gupta SK, Parada GA, Wu H, Lin S, Wang S, Zhao X, Goldman RD, Cai S, Guo M.Hu J, et al.Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17175-17180. doi: 10.1073/pnas.1903890116. Epub 2019 Aug 13.Proc Natl Acad Sci U S A. 2019.PMID:31409716Free PMC article.
- Regulation of Cell Behavior by Hydrostatic Pressure.Liu S, Tao R, Wang M, Tian J, Genin GM, Lu TJ, Xu F.Liu S, et al.Appl Mech Rev. 2019 Jul;71(4):0408031-4080313. doi: 10.1115/1.4043947. Epub 2019 Jul 23.Appl Mech Rev. 2019.PMID:31700195Free PMC article.Review.
- Distinct retrograde microtubule motor sets drive early and late endosome transport.Villari G, Enrico Bena C, Del Giudice M, Gioelli N, Sandri C, Camillo C, Fiorio Pla A, Bosia C, Serini G.Villari G, et al.EMBO J. 2020 Dec 15;39(24):e103661. doi: 10.15252/embj.2019103661. Epub 2020 Nov 20.EMBO J. 2020.PMID:33215754Free PMC article.
References
- Alberts B, et al. Molecular Biology of the Cell. 5th Ed. Garland Science; New York: 2008. pp. 965–1052.
- Larson RG. The Structure and Rheology of Complex Fluids. Oxford Univ Press; New York: 1999.
- Hoffman BD, Crocker JC. Cell mechanics: Dissecting the physical responses of cells to force. Annu Rev Biomed Eng. 2009;11:259–288. - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources