An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins
- PMID:28771529
- PMCID: PMC5542473
- DOI: 10.1371/journal.pone.0182016
An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins
Abstract
An intimate interaction between a pair of amino acids, a tyrosine and glycine on neighboring β-strands, has been previously reported to be important for the structural stability of autotransporters. Here, we show that the conservation of this interacting pair extends to nearly all major families of outer membrane β-barrel proteins, which are thought to have originated through duplication events involving an ancestral ββ hairpin. We analyzed the function of this motif using the prototypical outer membrane protein OmpX. Stopped-flow fluorescence shows that two folding processes occur in the millisecond time regime, the rates of which are reduced in the tyrosine mutant. Folding assays further demonstrate a reduction in the yield of folded protein for the mutant compared to the wild-type, as well as a reduction in thermal stability. Taken together, our data support the idea of an evolutionarily conserved 'folding core' that affects the folding, membrane insertion, and thermal stability of outer membrane protein β-barrels.
Conflict of interest statement
Figures










Similar articles
- Gene duplication of the eight-stranded beta-barrel OmpX produces a functional pore: a scenario for the evolution of transmembrane beta-barrels.Arnold T, Poynor M, Nussberger S, Lupas AN, Linke D.Arnold T, et al.J Mol Biol. 2007 Mar 2;366(4):1174-84. doi: 10.1016/j.jmb.2006.12.029. Epub 2006 Dec 16.J Mol Biol. 2007.PMID:17217961
- Position-Specific contribution of interface tryptophans on membrane protein energetics.Chaturvedi D, Mahalakshmi R.Chaturvedi D, et al.Biochim Biophys Acta Biomembr. 2018 Feb;1860(2):451-457. doi: 10.1016/j.bbamem.2017.11.003. Epub 2017 Nov 9.Biochim Biophys Acta Biomembr. 2018.PMID:29128310Free PMC article.
- Membrane protein folding on the example of outer membrane protein A of Escherichia coli.Kleinschmidt JH.Kleinschmidt JH.Cell Mol Life Sci. 2003 Aug;60(8):1547-58. doi: 10.1007/s00018-003-3170-0.Cell Mol Life Sci. 2003.PMID:14513830Free PMC article.Review.
- Folding kinetics of the outer membrane proteins OmpA and FomA into phospholipid bilayers.Kleinschmidt JH.Kleinschmidt JH.Chem Phys Lipids. 2006 Jun;141(1-2):30-47. doi: 10.1016/j.chemphyslip.2006.02.004. Epub 2006 Mar 20.Chem Phys Lipids. 2006.PMID:16581049Review.
- Biochemistry. Getting into and through the outer membrane.Tommassen J.Tommassen J.Science. 2007 Aug 17;317(5840):903-4. doi: 10.1126/science.1146518.Science. 2007.PMID:17702930No abstract available.
Cited by
- Biomimetic Membranes with Transmembrane Proteins: State-of-the-Art in Transmembrane Protein Applications.Ryu H, Fuwad A, Yoon S, Jang H, Lee JC, Kim SM, Jeon TJ.Ryu H, et al.Int J Mol Sci. 2019 Mar 21;20(6):1437. doi: 10.3390/ijms20061437.Int J Mol Sci. 2019.PMID:30901910Free PMC article.Review.
- Sculpting conducting nanopore size and shape throughde novo protein design.Berhanu S, Majumder S, Müntener T, Whitehouse J, Berner C, Bera AK, Kang A, Liang B, Khan GN, Sankaran B, Tamm LK, Brockwell DJ, Hiller S, Radford SE, Baker D, Vorobieva AA.Berhanu S, et al.bioRxiv [Preprint]. 2023 Dec 20:2023.12.20.572500. doi: 10.1101/2023.12.20.572500.bioRxiv. 2023.Update in:Science. 2024 Jul 19;385(6706):282-288. doi: 10.1126/science.adn3796.PMID:38187764Free PMC article.Updated.Preprint.
- Outer Membrane Protein Insertion by the β-barrel Assembly Machine.Ricci DP, Silhavy TJ.Ricci DP, et al.EcoSal Plus. 2019 Mar;8(2):10.1128/ecosalplus.ESP-0035-2018. doi: 10.1128/ecosalplus.ESP-0035-2018.EcoSal Plus. 2019.PMID:30869065Free PMC article.Review.
- Ecology and Biogenesis of Functional Amyloids in Pseudomonas.Rouse SL, Matthews SJ, Dueholm MS.Rouse SL, et al.J Mol Biol. 2018 Oct 12;430(20):3685-3695. doi: 10.1016/j.jmb.2018.05.004. Epub 2018 May 16.J Mol Biol. 2018.PMID:29753779Free PMC article.Review.
- Sculpting conducting nanopore size and shape through de novo protein design.Berhanu S, Majumder S, Müntener T, Whitehouse J, Berner C, Bera AK, Kang A, Liang B, Khan N, Sankaran B, Tamm LK, Brockwell DJ, Hiller S, Radford SE, Baker D, Vorobieva AA.Berhanu S, et al.Science. 2024 Jul 19;385(6706):282-288. doi: 10.1126/science.adn3796. Epub 2024 Jul 18.Science. 2024.PMID:39024453
References
- Benz R. Permeation of hydrophilic solutes through mitochondrial outer membranes: review on mitochondrial porins. Biochim Biophys Acta. 1994;1197: 167–96. doi:10.1016/0304-4157(94)90004-3 - DOI - PubMed
- Fischer K, Weber A, Brink S, Arbinger B, Schünemann D, Borchert S, et al. Porins from plants. Molecular cloning and functional characterization of two new members of the porin family. J Biol Chem. New York, New York, USA: ACM Press; 1994;269: 25754–60. - PubMed
- Dupont M, Dé E, Chollet R, Chevalier J, Pagès JM. Enterobacter aerogenes OmpX, a cation-selective channel mar- and osmo-regulated. FEBS Lett. 2004;569: 27–30. doi:10.1016/j.febslet.2004.05.047 - DOI - PubMed
- Arnold T, Poynor M, Nussberger S, Lupas AN, Linke D. Gene duplication of the eight-stranded β-barrel OmpX produces a functional pore: a scenario for the evolution of transmembrane β-barrels. J Mol Biol. Elsevier Ltd; 2007;366: 1174–84. doi:10.1016/j.jmb.2006.12.029 - DOI - PubMed
- Hong H, Patel DR, Tamm LK, van den Berg B. The outer membrane protein OmpW forms an eight-stranded β-barrel with a hydrophobic channel. J Biol Chem. 2006;281: 7568–77. doi:10.1074/jbc.M512365200 - DOI - PubMed
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases