The impact of machine learning techniques in the study of bipolar disorder: A systematic review
- PMID:28728937
- DOI: 10.1016/j.neubiorev.2017.07.004
The impact of machine learning techniques in the study of bipolar disorder: A systematic review
Abstract
Machine learning techniques provide new methods to predict diagnosis and clinical outcomes at an individual level. We aim to review the existing literature on the use of machine learning techniques in the assessment of subjects with bipolar disorder. We systematically searched PubMed, Embase and Web of Science for articles published in any language up to January 2017. We found 757 abstracts and included 51 studies in our review. Most of the included studies used multiple levels of biological data to distinguish the diagnosis of bipolar disorder from other psychiatric disorders or healthy controls. We also found studies that assessed the prediction of clinical outcomes and studies using unsupervised machine learning to build more consistent clinical phenotypes of bipolar disorder. We concluded that given the clinical heterogeneity of samples of patients with BD, machine learning techniques may provide clinicians and researchers with important insights in fields such as diagnosis, personalized treatment and prognosis orientation.
Keywords: Big data; Bipolar disorder; Diagnosis; Machine learning; Neuroimaging; Pattern recognition; Prediction; Predictive analysis; Suicide; Support vector machine.
Copyright © 2017 Elsevier Ltd. All rights reserved.
Similar articles
- Machine learning and big data analytics in bipolar disorder: A position paper from the International Society for Bipolar Disorders Big Data Task Force.Passos IC, Ballester PL, Barros RC, Librenza-Garcia D, Mwangi B, Birmaher B, Brietzke E, Hajek T, Lopez Jaramillo C, Mansur RB, Alda M, Haarman BCM, Isometsa E, Lam RW, McIntyre RS, Minuzzi L, Kessing LV, Yatham LN, Duffy A, Kapczinski F.Passos IC, et al.Bipolar Disord. 2019 Nov;21(7):582-594. doi: 10.1111/bdi.12828. Epub 2019 Sep 18.Bipolar Disord. 2019.PMID:31465619Review.
- Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning.Wu MJ, Mwangi B, Bauer IE, Passos IC, Sanches M, Zunta-Soares GB, Meyer TD, Hasan KM, Soares JC.Wu MJ, et al.Neuroimage. 2017 Jan 15;145(Pt B):254-264. doi: 10.1016/j.neuroimage.2016.02.016. Epub 2016 Feb 13.Neuroimage. 2017.PMID:26883067Free PMC article.
- Using structural MRI to identify individuals at genetic risk for bipolar disorders: a 2-cohort, machine learning study.Hajek T, Cooke C, Kopecek M, Novak T, Hoschl C, Alda M.Hajek T, et al.J Psychiatry Neurosci. 2015 Sep;40(5):316-24. doi: 10.1503/jpn.140142.J Psychiatry Neurosci. 2015.PMID:25853284Free PMC article.
- Machine learning approaches for prediction of bipolar disorder based on biological, clinical and neuropsychological markers: A systematic review and meta-analysis.Colombo F, Calesella F, Mazza MG, Melloni EMT, Morelli MJ, Scotti GM, Benedetti F, Bollettini I, Vai B.Colombo F, et al.Neurosci Biobehav Rev. 2022 Apr;135:104552. doi: 10.1016/j.neubiorev.2022.104552. Epub 2022 Feb 2.Neurosci Biobehav Rev. 2022.PMID:35120970Review.
- Machine learning applied to the prediction of relapse, hospitalization, and suicide in bipolar disorder using neuroimaging and clinical data: A systematic review.Amanollahi M, Jameie M, Looha MA, A Basti F, Cattarinussi G, Moghaddam HS, Di Camillo F, Akhondzadeh S, Pigoni A, Sambataro F, Brambilla P, Delvecchio G.Amanollahi M, et al.J Affect Disord. 2024 Sep 15;361:778-797. doi: 10.1016/j.jad.2024.06.061. Epub 2024 Jun 21.J Affect Disord. 2024.PMID:38908556Review.
Cited by
- Can an Integrated Science Approach to Precision Medicine Research Improve Lithium Treatment in Bipolar Disorders?Scott J, Etain B, Bellivier F.Scott J, et al.Front Psychiatry. 2018 Aug 21;9:360. doi: 10.3389/fpsyt.2018.00360. eCollection 2018.Front Psychiatry. 2018.PMID:30186186Free PMC article.Review.
- Connectome-Based Biomarkers Predict Subclinical Depression and Identify Abnormal Brain Connections With the Lateral Habenula and Thalamus.Zhu Y, Qi S, Zhang B, He D, Teng Y, Hu J, Wei X.Zhu Y, et al.Front Psychiatry. 2019 Jun 12;10:371. doi: 10.3389/fpsyt.2019.00371. eCollection 2019.Front Psychiatry. 2019.PMID:31244688Free PMC article.
- Performance of advanced machine learning algorithms overlogistic regression in predicting hospital readmissions: A meta-analysis.Talwar A, Lopez-Olivo MA, Huang Y, Ying L, Aparasu RR.Talwar A, et al.Explor Res Clin Soc Pharm. 2023 Aug 10;11:100317. doi: 10.1016/j.rcsop.2023.100317. eCollection 2023 Sep.Explor Res Clin Soc Pharm. 2023.PMID:37662697Free PMC article.
- Neurobiology of bipolar disorders: a review of genetic components, signaling pathways, biochemical changes, and neuroimaging findings.Scaini G, Valvassori SS, Diaz AP, Lima CN, Benevenuto D, Fries GR, Quevedo J.Scaini G, et al.Braz J Psychiatry. 2020 Sep-Oct;42(5):536-551. doi: 10.1590/1516-4446-2019-0732.Braz J Psychiatry. 2020.PMID:32267339Free PMC article.Review.
- Impact of Big Data Analytics on People's Health: Overview of Systematic Reviews and Recommendations for Future Studies.Borges do Nascimento IJ, Marcolino MS, Abdulazeem HM, Weerasekara I, Azzopardi-Muscat N, Gonçalves MA, Novillo-Ortiz D.Borges do Nascimento IJ, et al.J Med Internet Res. 2021 Apr 13;23(4):e27275. doi: 10.2196/27275.J Med Internet Res. 2021.PMID:33847586Free PMC article.
Publication types
MeSH terms
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical