Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science Free PMC article
Full text links

Actions

Share

Review
.2017 Apr;40(4):243-253.
doi: 10.14348/molcells.2017.0054. Epub 2017 Apr 12.

The Ciliary Transition Zone: Finding the Pieces and Assembling the Gate

Affiliations
Review

The Ciliary Transition Zone: Finding the Pieces and Assembling the Gate

João Gonçalves et al. Mol Cells.2017 Apr.

Abstract

Eukaryotic cilia are organelles that project from the surface of cells to fulfill motility and sensory functions. In vertebrates, the functions of both motile and immotile cilia are critical for embryonic development and adult tissue homeostasis. Importantly, a multitude of human diseases is caused by abnormal cilia biogenesis and functions which rely on the compartmentalization of the cilium and the maintenance of its protein composition. The transition zone (TZ) is a specialized ciliary domain present at the base of the cilium and is part of a gate that controls protein entry and exit from this organelle. The relevance of the TZ is highlighted by the fact that several of its components are coded by ciliopathy genes. Here we review recent developments in the study of TZ proteomes, the mapping of individual components to the TZ structure and the establishment of the TZ as a lipid gate.

Keywords: centriole; centrosome; cilia; transition zone.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Cilia structure. The scheme depicts the structure of a primary cilium. At their base eukaryotic cilia present a centriole/basal body, from which the axoneme microtubules elongate, and accessory structures such as the basal foot and the transition fibers. The ciliary membrane is a specialized membrane domain enriched in specific proteins (e.g. ARL13B) and lipid species (e.g. PI(4)P). At the proximal region of the axoneme is the transition zone characterized by microtubule-membrane connectors. Distal to the transition zone is localized the inversin domain which lacks y-links and has a distinct protein composition from the transition zone. The figure shows the protein modules present at the transition zone largely as they were described by Chih et al. (2011), Garcia-Gonzalo et al. (2011), and Sang et al. (2011). Indicated are also genetic interactions between components of the transition zone modules and components of the BBSome and IFT.
Fig. 2
Fig. 2
Localization of transition zone proteins. The schemes represent the localization of transition zone and basal body components in human,Drosophila andTrypanosome cilia and flagella, and were adapted from Dean et al. (2016), Pratt et al. (2016), and Yang et al. (2015). MT – microtubules; CM – ciliary membrane; CP – ciliary pocket; TF – transition fibers; BB – basal body; TZ – transition zone; BP – basal plate; TP – terminal plate.
See this image and copyright information in PMC

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

References

    1. Abdelhamed Z.A., Natarajan S., Wheway G., Inglehearn C.F., Toomes C., Johnson C.A., Jagger D.J. The Meckel-Gruber syndrome protein TMEM67 controls basal body positioning and epithelial branching morphogenesis in mice via the non-canonical Wnt pathway. Dis Model Mech. 2015;8:527–541. - PMC - PubMed
    1. Arts H.H., Doherty D., van Beersum S.E., Parisi M.A., Letteboer S.J., Gorden N.T., Peters T.A., Märker T., Voesenek K., Kartono A., et al. Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome. Nat Genet. 2007;39:882–888. - PubMed
    1. Awata J., Takada S., Standley C., Lechtreck K.F., Bellvé K.D., Pazour G.J., Fogarty K.E., Witman G.B. NPHP4 controls ciliary trafficking of membrane proteins and large soluble proteins at the transition zone. J Cell Sci. 2014;127:4714–4727. - PMC - PubMed
    1. Bachmann-Gagescu R., Phelps I.G., Stearns G., Link B.A., Brockerhoff S.E., Moens C.B., Doherty D. The ciliopathy gene cc2d2a controls zebrafish photoreceptor outer segment development through a role in Rab8-dependent vesicle trafficking. Hum Mol Genet. 2011;20:4041–4055. - PMC - PubMed
    1. Bachmann-Gagescu R., Dona M., Hetterschijt L., Tonnaer E., Peters T., de Vrieze E., Mans D.A., van Beersum S.E., Phelps I.G., Arts H.H., et al. The ciliopathy protein CC2D2A associates with NINL and functions in RAB8-MICAL3-regulated vesicle trafficking. PLoS Genet. 2015;11:e1005575. - PMC - PubMed

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp