Structural History of Human SRGAP2 Proteins
- PMID:28333212
- PMCID: PMC5435084
- DOI: 10.1093/molbev/msx094
Structural History of Human SRGAP2 Proteins
Abstract
In the development of the human brain, human-specific genes are considered to play key roles, conferring its unique advantages and vulnerabilities. At the time of Homo lineage divergence from Australopithecus, SRGAP2C gradually emerged through a process of serial duplications and mutagenesis from ancestral SRGAP2A (3.4-2.4 Ma). Remarkably, ectopic expression of SRGAP2C endows cultured mouse brain cells, with human-like characteristics, specifically, increased dendritic spine length and density. To understand the molecular mechanisms underlying this change in neuronal morphology, we determined the structure of SRGAP2A and studied the interplay between SRGAP2A and SRGAP2C. We found that: 1) SRGAP2A homo-dimerizes through a large interface that includes an F-BAR domain, a newly identified F-BAR extension (Fx), and RhoGAP-SH3 domains. 2) SRGAP2A has an unusual inverse geometry, enabling associations with lamellipodia and dendritic spine heads in vivo, and scaffolding of membrane protrusions in cell culture. 3) As a result of the initial partial duplication event (∼3.4 Ma), SRGAP2C carries a defective Fx-domain that severely compromises its solubility and membrane-scaffolding ability. Consistently, SRGAP2A:SRAGP2C hetero-dimers form, but are insoluble, inhibiting SRGAP2A activity. 4) Inactivation of SRGAP2A is sensitive to the level of hetero-dimerization with SRGAP2C. 5) The primal form of SRGAP2C (P-SRGAP2C, existing between ∼3.4 and 2.4 Ma) is less effective in hetero-dimerizing with SRGAP2A than the modern SRGAP2C, which carries several substitutions (from ∼2.4 Ma). Thus, the genetic mutagenesis phase contributed to modulation of SRGAP2A's inhibition of neuronal expansion, by introducing and improving the formation of inactive SRGAP2A:SRGAP2C hetero-dimers, indicating a stepwise involvement of SRGAP2C in human evolutionary history.
Keywords: F-BAR domain; SRGAP2; X-ray crystallography; human evolution; structural biology.
© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Figures







Similar articles
- Zebrafish models of human-duplicatedSRGAP2 reveal novel functions in microglia and visual system development.Uribe-Salazar JM, Kaya G, Weyenberg K, Radke B, Hino K, Soto DC, Shiu JL, Zhang W, Ingamells C, Haghani NK, Xu E, Rosas J, Simó S, Miesfeld J, Glaser T, Baraban SC, Jao LE, Dennis MY.Uribe-Salazar JM, et al.bioRxiv [Preprint]. 2024 Sep 27:2024.09.11.612570. doi: 10.1101/2024.09.11.612570.bioRxiv. 2024.PMID:39314374Free PMC article.Preprint.
- The human-specific paralogs SRGAP2B and SRGAP2C differentially modulate SRGAP2A-dependent synaptic development.Schmidt ERE, Kupferman JV, Stackmann M, Polleux F.Schmidt ERE, et al.Sci Rep. 2019 Dec 10;9(1):18692. doi: 10.1038/s41598-019-54887-4.Sci Rep. 2019.PMID:31822692Free PMC article.
- Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation.Charrier C, Joshi K, Coutinho-Budd J, Kim JE, Lambert N, de Marchena J, Jin WL, Vanderhaeghen P, Ghosh A, Sassa T, Polleux F.Charrier C, et al.Cell. 2012 May 11;149(4):923-35. doi: 10.1016/j.cell.2012.03.034. Epub 2012 May 3.Cell. 2012.PMID:22559944Free PMC article.
- Current knowledge of the large RhoGAP family of proteins.Tcherkezian J, Lamarche-Vane N.Tcherkezian J, et al.Biol Cell. 2007 Feb;99(2):67-86. doi: 10.1042/BC20060086.Biol Cell. 2007.PMID:17222083Review.
- Structural dynamics of dendritic spines: molecular composition, geometry and functional regulation.Ebrahimi S, Okabe S.Ebrahimi S, et al.Biochim Biophys Acta. 2014 Oct;1838(10):2391-8. doi: 10.1016/j.bbamem.2014.06.002. Epub 2014 Jun 8.Biochim Biophys Acta. 2014.PMID:24915021Review.
Cited by
- Zebrafish models of human-duplicatedSRGAP2 reveal novel functions in microglia and visual system development.Uribe-Salazar JM, Kaya G, Weyenberg K, Radke B, Hino K, Soto DC, Shiu JL, Zhang W, Ingamells C, Haghani NK, Xu E, Rosas J, Simó S, Miesfeld J, Glaser T, Baraban SC, Jao LE, Dennis MY.Uribe-Salazar JM, et al.bioRxiv [Preprint]. 2024 Sep 27:2024.09.11.612570. doi: 10.1101/2024.09.11.612570.bioRxiv. 2024.PMID:39314374Free PMC article.Preprint.
- Synaptic neoteny of human cortical neurons requires species-specific balancing of SRGAP2-SYNGAP1 cross-inhibition.Libé-Philippot B, Iwata R, Recupero AJ, Wierda K, Bernal Garcia S, Hammond L, van Benthem A, Limame R, Ditkowska M, Beckers S, Gaspariunaite V, Peze-Heidsieck E, Remans D, Charrier C, Theys T, Polleux F, Vanderhaeghen P.Libé-Philippot B, et al.Neuron. 2024 Nov 6;112(21):3602-3617.e9. doi: 10.1016/j.neuron.2024.08.021. Epub 2024 Oct 14.Neuron. 2024.PMID:39406239Free PMC article.
- Beyond Axon Guidance: Roles of Slit-Robo Signaling in Neocortical Formation.Gonda Y, Namba T, Hanashima C.Gonda Y, et al.Front Cell Dev Biol. 2020 Dec 23;8:607415. doi: 10.3389/fcell.2020.607415. eCollection 2020.Front Cell Dev Biol. 2020.PMID:33425915Free PMC article.Review.
- Structures, Functions, and Dynamics of ESCRT-III/Vps4 Membrane Remodeling and Fission Complexes.McCullough J, Frost A, Sundquist WI.McCullough J, et al.Annu Rev Cell Dev Biol. 2018 Oct 6;34:85-109. doi: 10.1146/annurev-cellbio-100616-060600. Epub 2018 Aug 10.Annu Rev Cell Dev Biol. 2018.PMID:30095293Free PMC article.Review.
- Mind the (sr)GAP - roles of Slit-Robo GAPs in neurons, brains and beyond.Lucas B, Hardin J.Lucas B, et al.J Cell Sci. 2017 Dec 1;130(23):3965-3974. doi: 10.1242/jcs.207456. Epub 2017 Nov 2.J Cell Sci. 2017.PMID:29097383Free PMC article.Review.
References
- Beneken J, Tu JC, Xiao B, Nuriya M, Yuan JP, Worley PF, Leahy DJ.. 2000. Structure of the Homer EVH1 domain-peptide complex reveals a new twist in polyproline recognition. Neuron 26:143–154. - PubMed
- Canagarajah B, Leskow FC, Ho JY, Mischak H, Saidi LF, Kazanietz MG, Hurley JH.. 2004. Structural mechanism for lipid activation of the Rac-specific GAP, beta2-chimaerin. Cell 119:407–418. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials