Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice
- PMID:28291770
- PMCID: PMC5355895
- DOI: 10.1038/ncomms14716
Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice
Abstract
In retinitis pigmentosa, loss of cone photoreceptors leads to blindness, and preservation of cone function is a major therapeutic goal. However, cone loss is thought to occur as a secondary event resulting from degeneration of rod photoreceptors. Here we report a genome editing approach in which adeno-associated virus (AAV)-mediated CRISPR/Cas9 delivery to postmitotic photoreceptors is used to target the Nrl gene, encoding for Neural retina-specific leucine zipper protein, a rod fate determinant during photoreceptor development. Following Nrl disruption, rods gain partial features of cones and present with improved survival in the presence of mutations in rod-specific genes, consequently preventing secondary cone degeneration. In three different mouse models of retinal degeneration, the treatment substantially improves rod survival and preserves cone function. Our data suggest that CRISPR/Cas9-mediated NRL disruption in rods may be a promising treatment option for patients with retinitis pigmentosa.
Conflict of interest statement
The authors declare no competing financial interests.
Figures








Similar articles
- Reprogramming of adult rod photoreceptors prevents retinal degeneration.Montana CL, Kolesnikov AV, Shen SQ, Myers CA, Kefalov VJ, Corbo JC.Montana CL, et al.Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1732-7. doi: 10.1073/pnas.1214387110. Epub 2013 Jan 14.Proc Natl Acad Sci U S A. 2013.PMID:23319618Free PMC article.
- Rod genesis driven by mafba in an nrl knockout zebrafish model with altered photoreceptor composition and progressive retinal degeneration.Liu F, Qin Y, Huang Y, Gao P, Li J, Yu S, Jia D, Chen X, Lv Y, Tu J, Sun K, Han Y, Reilly J, Shu X, Lu Q, Tang Z, Xu C, Luo D, Liu M.Liu F, et al.PLoS Genet. 2022 Mar 4;18(3):e1009841. doi: 10.1371/journal.pgen.1009841. eCollection 2022 Mar.PLoS Genet. 2022.PMID:35245286Free PMC article.
- Preservation of cone photoreceptors after a rapid yet transient degeneration and remodeling in cone-only Nrl-/- mouse retina.Roger JE, Ranganath K, Zhao L, Cojocaru RI, Brooks M, Gotoh N, Veleri S, Hiriyanna A, Rachel RA, Campos MM, Fariss RN, Wong WT, Swaroop A.Roger JE, et al.J Neurosci. 2012 Jan 11;32(2):528-41. doi: 10.1523/JNEUROSCI.3591-11.2012.J Neurosci. 2012.PMID:22238088Free PMC article.
- Therapeutic strategy for handling inherited retinal degenerations in a gene-independent manner using rod-derived cone viability factors.Léveillard T, Fridlich R, Clérin E, Aït-Ali N, Millet-Puel G, Jaillard C, Yang Y, Zack D, van-Dorsselaer A, Sahel JA.Léveillard T, et al.C R Biol. 2014 Mar;337(3):207-13. doi: 10.1016/j.crvi.2013.12.002. Epub 2014 Feb 20.C R Biol. 2014.PMID:24702847Review.
- Metabolic and Redox Signaling of the Nucleoredoxin-Like-1 Gene for the Treatment of Genetic Retinal Diseases.Clérin E, Marussig M, Sahel JA, Léveillard T.Clérin E, et al.Int J Mol Sci. 2020 Feb 27;21(5):1625. doi: 10.3390/ijms21051625.Int J Mol Sci. 2020.PMID:32120883Free PMC article.Review.
Cited by
- Pre- and postsynaptic alterations in the visual cortex of the P23H-1 retinal degeneration rat model.Martinez-Galan JR, Garcia-Belando M, Cabanes-Sanchis JJ, Caminos E.Martinez-Galan JR, et al.Front Neuroanat. 2022 Oct 13;16:1000085. doi: 10.3389/fnana.2022.1000085. eCollection 2022.Front Neuroanat. 2022.PMID:36312296Free PMC article.
- Current and future therapeutic strategies for the treatment of retinal neurodegenerative diseases.Maneu V, Lax P, Cuenca N.Maneu V, et al.Neural Regen Res. 2022 Jan;17(1):103-104. doi: 10.4103/1673-5374.314305.Neural Regen Res. 2022.PMID:34100441Free PMC article.No abstract available.
- Supramolecular Nanosubstrate-Mediated Delivery for CRISPR/Cas9 Gene Disruption and Deletion.Ban Q, Yang P, Chou SJ, Qiao L, Xia H, Xue J, Wang F, Xu X, Sun N, Zhang RY, Zhang C, Lee A, Liu W, Lin TY, Ko YL, Antovski P, Zhang X, Chiou SH, Lee CF, Hui W, Liu D, Jonas SJ, Weiss PS, Tseng HR.Ban Q, et al.Small. 2021 Jul;17(28):e2100546. doi: 10.1002/smll.202100546. Epub 2021 Jun 8.Small. 2021.PMID:34105245Free PMC article.
- Targeting of the NRL Pathway as a Therapeutic Strategy to Treat Retinitis Pigmentosa.Moore SM, Skowronska-Krawczyk D, Chao DL.Moore SM, et al.J Clin Med. 2020 Jul 13;9(7):2224. doi: 10.3390/jcm9072224.J Clin Med. 2020.PMID:32668775Free PMC article.Review.
- AAV-Anti-miR-214 Prevents Collapse of the Femoral Head in Osteonecrosis by Regulating Osteoblast and Osteoclast Activities.Wang C, Sun W, Ling S, Wang Y, Wang X, Meng H, Li Y, Yuan X, Li J, Liu R, Zhao D, Lu Q, Wang A, Guo Q, Lu S, Tian H, Li Y, Peng J.Wang C, et al.Mol Ther Nucleic Acids. 2019 Dec 6;18:841-850. doi: 10.1016/j.omtn.2019.09.030. Epub 2019 Oct 18.Mol Ther Nucleic Acids. 2019.PMID:31739209Free PMC article.
References
- Hartong D. T., Berson E. L. & Dryja T. P. Retinitis pigmentosa. Lancet 368, 1795–1809 (2006). - PubMed
- Curcio C. A., Sloan K. R., Kalina R. E. & Hendrickson A. E. Human photoreceptor topography. J. Comp. Neurol. 292, 497–523 (1990). - PubMed
- Roorda A. & Williams D. R. The arrangement of the three cone classes in the living human eye. Nature 397, 520–522 (1999). - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases