Ergot Alkaloids of the Family Clavicipitaceae
- PMID:28168931
- PMCID: PMC5480214
- DOI: 10.1094/PHYTO-12-16-0435-RVW
Ergot Alkaloids of the Family Clavicipitaceae
Abstract
Ergot alkaloids are highly diverse in structure, exhibit diverse effects on animals, and are produced by diverse fungi in the phylum Ascomycota, including pathogens and mutualistic symbionts of plants. These mycotoxins are best known from the fungal family Clavicipitaceae and are named for the ergot fungi that, through millennia, have contaminated grains and caused mass poisonings, with effects ranging from dry gangrene to convulsions and death. However, they are also useful sources of pharmaceuticals for a variety of medical purposes. More than a half-century of research has brought us extensive knowledge of ergot-alkaloid biosynthetic pathways from common early steps to several taxon-specific branches. Furthermore, a recent flurry of genome sequencing has revealed the genomic processes underlying ergot-alkaloid diversification. In this review, we discuss the evolution of ergot-alkaloid biosynthesis genes and gene clusters, including roles of gene recruitment, duplication and neofunctionalization, as well as gene loss, in diversifying structures of clavines, lysergic acid amides, and complex ergopeptines. Also reviewed are prospects for manipulating ergot-alkaloid profiles to enhance suitability of endophytes for forage grasses.
Figures






Similar articles
- Ergot alkaloids--biology and molecular biology.Schardl CL, Panaccione DG, Tudzynski P.Schardl CL, et al.Alkaloids Chem Biol. 2006;63:45-86. doi: 10.1016/s1099-4831(06)63002-2.Alkaloids Chem Biol. 2006.PMID:17133714Review.
- Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci.Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B, Panaccione DG, Schweri KK, Voisey CR, Farman ML, Jaromczyk JW, Roe BA, O'Sullivan DM, Scott B, Tudzynski P, An Z, Arnaoudova EG, Bullock CT, Charlton ND, Chen L, Cox M, Dinkins RD, Florea S, Glenn AE, Gordon A, Güldener U, Harris DR, Hollin W, Jaromczyk J, Johnson RD, Khan AK, Leistner E, Leuchtmann A, Li C, Liu J, Liu J, Liu M, Mace W, Machado C, Nagabhyru P, Pan J, Schmid J, Sugawara K, Steiner U, Takach JE, Tanaka E, Webb JS, Wilson EV, Wiseman JL, Yoshida R, Zeng Z.Schardl CL, et al.PLoS Genet. 2013;9(2):e1003323. doi: 10.1371/journal.pgen.1003323. Epub 2013 Feb 28.PLoS Genet. 2013.PMID:23468653Free PMC article.
- Genome mining of ascomycetous fungi reveals their genetic potential for ergot alkaloid production.Gerhards N, Matuschek M, Wallwey C, Li SM.Gerhards N, et al.Arch Microbiol. 2015 Jun;197(5):701-13. doi: 10.1007/s00203-015-1105-4. Epub 2015 Mar 22.Arch Microbiol. 2015.PMID:25796201
- Analysis and modification of ergot alkaloid profiles in fungi.Panaccione DG, Ryan KL, Schardl CL, Florea S.Panaccione DG, et al.Methods Enzymol. 2012;515:267-90. doi: 10.1016/B978-0-12-394290-6.00012-4.Methods Enzymol. 2012.PMID:22999178
- Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes.Wallwey C, Li SM.Wallwey C, et al.Nat Prod Rep. 2011 Mar;28(3):496-510. doi: 10.1039/c0np00060d. Epub 2010 Dec 24.Nat Prod Rep. 2011.PMID:21186384Review.
Cited by
- Genetic Reprogramming of the Ergot Alkaloid Pathway of Metarhizium brunneum.Davis KA, Sampson JK, Panaccione DG.Davis KA, et al.Appl Environ Microbiol. 2020 Sep 17;86(19):e01251-20. doi: 10.1128/AEM.01251-20. Print 2020 Sep 17.Appl Environ Microbiol. 2020.PMID:32769181Free PMC article.
- Microbial Metabolites Beneficial to Plant Hosts Across Ecosystems.Mathur V, Ulanova D.Mathur V, et al.Microb Ecol. 2023 Jul;86(1):25-48. doi: 10.1007/s00248-022-02073-x. Epub 2022 Jul 22.Microb Ecol. 2023.PMID:35867138Review.
- Contribution of a novel gene to lysergic acid amide synthesis in Metarhizium brunneum.Britton KN, Steen CR, Davis KA, Sampson JK, Panaccione DG.Britton KN, et al.BMC Res Notes. 2022 May 18;15(1):183. doi: 10.1186/s13104-022-06068-2.BMC Res Notes. 2022.PMID:35585609Free PMC article.
- Acrophiarin (antibiotic S31794/F-1) from Penicillium arenicola shares biosynthetic features with both Aspergillus- and Leotiomycete-type echinocandins.Lan N, Perlatti B, Kvitek DJ, Wiemann P, Harvey CJB, Frisvad J, An Z, Bills GF.Lan N, et al.Environ Microbiol. 2020 Jun;22(6):2292-2311. doi: 10.1111/1462-2920.15004. Epub 2020 Apr 14.Environ Microbiol. 2020.PMID:32239586Free PMC article.
- Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms.Ogawara H.Ogawara H.Molecules. 2018 Jun 18;23(6):1476. doi: 10.3390/molecules23061476.Molecules. 2018.PMID:29912169Free PMC article.Review.
References
- Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol. 2006;55:539–552. - PubMed
- Beaulieu WT, Panaccione DG, Ryan KL, Kaonongbua W, Clay K. Phylogenetic and chemotypic diversity of Periglandula species in eight new morning glory hosts (Convolvulaceae) Mycologia. 2015;107:667–678. - PubMed
- Bischoff JF, White JF., Jr . The plant-infecting clavicipitaleans. In: White JF Jr, Bacon CW, Hywel Jones NL, Spatafora JW, editors. Clavicipitalean Fungi: Evolutionary Biology, Chemistry, Biocontrol and Cultural Impacts. Marcel-Dekker, Inc; New York, Basel: 2003. pp. 125–149.
- Blaney BJ, Maryam R, Murray SA, Ryley MJ. Alkaloids of the sorghum ergot pathogen (Claviceps africana): Assay methods for grain and feed and variation between sclerotia/sphacelia. Aust J Agric Res. 2003;54:167–175.
- Bouton JH, Latch GCM, Hill NS, Hoveland CS, McCann MA, Watson RH, Parish JA, Hawkins LL, Thompson FN. Reinfection of tall fescue cultivars with non-ergot alkaloid-producing endophytes. Agron J. 2002;94:567–574.
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources