Tumour-associated macrophages as treatment targets in oncology
- PMID:28117416
- PMCID: PMC5480600
- DOI: 10.1038/nrclinonc.2016.217
Tumour-associated macrophages as treatment targets in oncology
Abstract
Macrophages are crucial drivers of tumour-promoting inflammation. Tumour-associated macrophages (TAMs) contribute to tumour progression at different levels: by promoting genetic instability, nurturing cancer stem cells, supporting metastasis, and taming protective adaptive immunity. TAMs can exert a dual, yin-yang influence on the effectiveness of cytoreductive therapies (chemotherapy and radiotherapy), either antagonizing the antitumour activity of these treatments by orchestrating a tumour-promoting, tissue-repair response or, instead, enhancing the overall antineoplastic effect. TAMs express molecular triggers of checkpoint proteins that regulate T-cell activation, and are targets of certain checkpoint-blockade immunotherapies. Other macrophage-centred approaches to anticancer therapy are under investigation, and include: inhibition of macrophage recruitment to, and/or survival in, tumours; functional re-education of TAMs to an antitumour, 'M1-like' mode; and tumour-targeting monoclonal antibodies that elicit macrophage-mediated extracellular killing, or phagocytosis and intracellular destruction of cancer cells. The evidence supporting these strategies is reviewed herein. We surmise that TAMs can provide tools to tailor the use of cytoreductive therapies and immunotherapy in a personalized medicine approach, and that TAM-focused therapeutic strategies have the potential to complement and synergize with both chemotherapy and immunotherapy.
Figures



Similar articles
- Macrophages at the crossroads of anticancer strategies.Cortese N, Donadon M, Rigamonti A, Marchesi F.Cortese N, et al.Front Biosci (Landmark Ed). 2019 Jun 1;24(7):1271-1283. doi: 10.2741/4779.Front Biosci (Landmark Ed). 2019.PMID:31136979Review.
- The role of macrophage in regulating tumour microenvironment and the strategies for reprogramming tumour-associated macrophages in antitumour therapy.Xu L, Xie X, Luo Y.Xu L, et al.Eur J Cell Biol. 2021 Mar;100(2):151153. doi: 10.1016/j.ejcb.2021.151153. Epub 2021 Jan 13.Eur J Cell Biol. 2021.PMID:33476912Review.
- Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity.Baer C, Squadrito ML, Laoui D, Thompson D, Hansen SK, Kiialainen A, Hoves S, Ries CH, Ooi CH, De Palma M.Baer C, et al.Nat Cell Biol. 2016 Jul;18(7):790-802. doi: 10.1038/ncb3371. Epub 2016 Jun 13.Nat Cell Biol. 2016.PMID:27295554
- Anti-tumour strategies aiming to target tumour-associated macrophages.Tang X, Mo C, Wang Y, Wei D, Xiao H.Tang X, et al.Immunology. 2013 Feb;138(2):93-104. doi: 10.1111/imm.12023.Immunology. 2013.PMID:23113570Free PMC article.Review.
- Macrophages as tools and targets in cancer therapy.Mantovani A, Allavena P, Marchesi F, Garlanda C.Mantovani A, et al.Nat Rev Drug Discov. 2022 Nov;21(11):799-820. doi: 10.1038/s41573-022-00520-5. Epub 2022 Aug 16.Nat Rev Drug Discov. 2022.PMID:35974096Free PMC article.Review.
Cited by
- Tumor microenvironment characterization in cervical cancer identifies prognostic relevant gene signatures.Peng L, Hayatullah G, Zhou H, Chang S, Liu L, Qiu H, Duan X, Han L.Peng L, et al.PLoS One. 2021 Apr 26;16(4):e0249374. doi: 10.1371/journal.pone.0249374. eCollection 2021.PLoS One. 2021.PMID:33901225Free PMC article.
- Novel risk scoring system for metastatic renal cell carcinoma patients treated with cabozantinib.Martini DJ, Kline MR, Liu Y, Shabto JM, Carthon BC, Russler GA, Yantorni L, Hitron EE, Caulfield S, Goldman JM, Harris WB, Kucuk O, Master VA, Bilen MA.Martini DJ, et al.Cancer Treat Res Commun. 2021;28:100393. doi: 10.1016/j.ctarc.2021.100393. Epub 2021 May 9.Cancer Treat Res Commun. 2021.PMID:34029879Free PMC article.
- Systemically targeting monocytic myeloid-derived suppressor cells using dendrimers and their cell-level biodistribution kinetics.Littrell CA, Takacs GP, Sankara CS, Sherman A, Rubach KA, Garcia JS, Bell CA, Lnu T, Harrison JK, Zhang F.Littrell CA, et al.J Control Release. 2024 Oct;374:181-193. doi: 10.1016/j.jconrel.2024.08.003. Epub 2024 Aug 15.J Control Release. 2024.PMID:39103055
- Medulloblastoma recurrence and metastatic spread are independent of colony-stimulating factor 1 receptor signaling and macrophage survival.Crotty EE, Smith SMC, Brasel K, Pakiam F, Girard EJ, Connor YD, Zindy F, Mhyre AJ, Roussel MF, Olson JM.Crotty EE, et al.J Neurooncol. 2021 Jun;153(2):225-237. doi: 10.1007/s11060-021-03767-x. Epub 2021 May 8.J Neurooncol. 2021.PMID:33963961Free PMC article.
- Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors.Galluzzi L, Humeau J, Buqué A, Zitvogel L, Kroemer G.Galluzzi L, et al.Nat Rev Clin Oncol. 2020 Dec;17(12):725-741. doi: 10.1038/s41571-020-0413-z. Epub 2020 Aug 5.Nat Rev Clin Oncol. 2020.PMID:32760014Review.
References
- Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44. - PubMed
- Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. - PubMed
- Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45. - PubMed
- Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7:211–7. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources