Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Share

.2017 Apr:109:151-163.
doi: 10.1016/j.ympev.2017.01.005. Epub 2017 Jan 9.

Eggshell palaeogenomics: Palaeognath evolutionary history revealed through ancient nuclear and mitochondrial DNA from Madagascan elephant bird (Aepyornis sp.) eggshell

Affiliations

Eggshell palaeogenomics: Palaeognath evolutionary history revealed through ancient nuclear and mitochondrial DNA from Madagascan elephant bird (Aepyornis sp.) eggshell

Alicia Grealy et al. Mol Phylogenet Evol.2017 Apr.

Abstract

Palaeognaths, the sister group of all other living birds (neognaths), were once considered to be vicariant relics from the breakup of the Gondwanan supercontinent. However, recent molecular studies instead argue for dispersal of volant ancestors across marine barriers. Resolving this debate hinges upon accurately reconstructing their evolutionary relationships and dating their divergences, which often relies on phylogenetic information from extinct relatives and nuclear genomes. Mitogenomes from the extinct elephant birds of Madagascar have helped inform the palaeognath phylogeny; however, nuclear information has remained unavailable. Here, we use ancient DNA (aDNA) extracted from fossil eggshell, together with target enrichment and next-generation sequencing techniques, to reconstruct an additional new mitogenome from Aepyornis sp. with 33.5X coverage. We also recover the first elephant bird nuclear aDNA, represented by 12,500bp of exonic information. While we confirm that elephant birds are sister taxa to the kiwi, our data suggests that, like neognaths, palaeognaths underwent an explosive radiation between 69 and 52Ma-well after the break-up of Gondwana, and more rapidly than previously estimated from mitochondrial data alone. These results further support the idea that ratites primarily diversified immediately following the Cretaceous-Palaeogene mass extinction and convergently evolved flightlessness. Our study reinforces the importance of including information from the nuclear genome of extinct taxa for recovering deep evolutionary relationships. Furthermore, with approximately 3% endogenous aDNA retrieved, avian eggshell can be a valuable substrate for recovering high quality aDNA. We suggest that elephant bird whole genome recovery is ultimately achievable, and will provide future insights into the evolution these birds.

Keywords: Ancient DNA; Biogeography; Eggshell; High-throughput sequencing; Palaeognath; Phylogeny.

Copyright © 2017 Elsevier Inc. All rights reserved.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

MeSH terms

Substances

Associated data

Related information

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp