Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

BioMed Central full text link BioMed Central Free PMC article
Full text links

Actions

Share

doi: 10.1186/s12936-016-1657-z.

MALDI-TOF MS as an innovative tool for detection of Plasmodium parasites in Anopheles mosquitoes

Affiliations

MALDI-TOF MS as an innovative tool for detection of Plasmodium parasites in Anopheles mosquitoes

Maureen Laroche et al. Malar J..

Abstract

Background: Malaria is still a major public health issue worldwide, and one of the best approaches to fight the disease remains vector control. The current methods for mosquito identification include morphological methods that are generally time-consuming and require expertise, and molecular methods that require laboratory facilities with relatively expensive running costs. Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology, routinely used for bacterial identification, has recently emerged in the field of entomology. The aim of the present study was to assess whether MALDI-TOF MS could successfully distinguish Anopheles stephensi mosquitoes according to their Plasmodium infection status.

Methods: C57BL/6 mice experimentally infected with Plasmodium berghei were exposed to An. stephensi bites. For the determination of An. stephensi infection status, mosquito cephalothoraxes were dissected and submitted to mass spectrometry analyses and DNA amplification for molecular analysis. Spectra were grouped according to mosquitoes' infection status and spectra quality was validated based on intensity and reproducibility within each group. The in-lab MALDI-TOF MS arthropod reference spectra database, upgraded with representative spectra from both groups (infected/non-infected), was subsequently queried blindly with cephalothorax spectra from specimens of both groups.

Results: The MALDI TOF MS profiles generated from protein extracts prepared from the cephalothorax of An. stephensi allowed distinction between infected and uninfected mosquitoes. Correct classification was obtained in blind test analysis for (79/80) 98.75% of all mosquitoes tested. Only one of 80 specimens, an infected mosquito, was misclassified in the blind test analysis.

Conclusions: Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry appears to be a promising, rapid and reliable tool for the epidemiological surveillance of Anopheles vectors, including their identification and their infection status.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Giemsa-stained mouse tail-blood smear performed 4 days post-infection showing gametocytes. Gametocyte-infected cells are indicated byblack arrows
Fig. 2
Fig. 2
Representative MS spectra of non-infected andPlasmodium berghei-infectedAnopheles stephensi cephalothoraxes using Flex analysis 3.3 software. a.u., arbitrary units; m/z, mass-to-charge ratio.Vertical bar highlights of distinct spectral regions between infected and uninfected mosquitoes
Fig. 3
Fig. 3
Comparison of MALDI-TOF MS profiles of mosquitoes infected or not byPlasmodium berghei using ClinProTools software.Red andgreen profiles correspond to average spectrum of control and infected mosquitoes respectively.Peak masses (Da) are indicated with an arrow above the referred peak. arb.u., arbitrary units;m/z, mass-to-charge ratio
See this image and copyright information in PMC

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

References

    1. White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM. Malaria. Lancet. 2014;383:723–735. doi: 10.1016/S0140-6736(13)60024-0. - DOI - PubMed
    1. WHO: World malaria report 2014. Geneva: World Health Organization; 2015.
    1. Rajavel AR, Kumar NP, Natarajan R, Vanamail P, Rathinakumar A, Jambulingam P. Morphological and molecular characterization of the ecological, biological and behavioural variants of the JE vector Culex tritaeniorhynchus: an assessment of its taxonomic status. J Vector Borne Dis. 2015;52:40–51. - PubMed
    1. Yssouf A, Almeras L, Raoult D, Parola P. Emerging tools for identification of arthropod vectors. Future Microbiol. 2016;11:549–566. doi: 10.2217/fmb.16.5. - DOI - PubMed
    1. Bassene H, Kengne P, Ndiath MO, Sokhna C, Dupressoir T, Fontenille D, et al. Comparison of PCR, ELISA-CSP and direct microscopic observation methods for the detection of Plasmodium falciparum sporozoites in Anopheles gambiae M in Senegal. Bull Soc Pathol Exot. 2009;102:233–237. - PubMed

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
BioMed Central full text link BioMed Central Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp