Archaeal phospholipids: Structural properties and biosynthesis
- PMID:28007654
- DOI: 10.1016/j.bbalip.2016.12.006
Archaeal phospholipids: Structural properties and biosynthesis
Abstract
Phospholipids are major components of the cellular membranes present in all living organisms. They typically form a lipid bilayer that embroiders the cell or cellular organelles, constitute a barrier for ions and small solutes and form a matrix that supports the function of membrane proteins. The chemical composition of the membrane phospholipids present in the two prokaryotic domains Archaea and Bacteria are vastly different. Archaeal lipids are composed of highly-methylated isoprenoid chains that are ether-linked to a glycerol-1-phosphate backbone while bacterial phospholipids consist of straight fatty acids bound by ester bonds to the enantiomeric glycerol-3-phosphate backbone. The chemical structure of the archaeal lipids and their compositional diversity ensures the required stability at extreme environmental conditions as many archaea thrive at such conditions including high or low temperature, high salinity and extreme acidic or alkaline pH values. However, not all archaea are extremophiles, and the presence of ether-linked phospholipids is a phylogenetic marker that distinguishes Archaea from other life forms. During the past decade, our understanding of the biosynthesis of archaeal lipids has progressed resulting in the characterization of the main biosynthetic steps of the pathway including the reconstitution of lipid biosynthesis in vitro. Here we describe the chemical and physical properties of archaeal lipids and membranes derived thereof, summarize the existing knowledge about the enzymology of the archaeal lipid biosynthetic pathway and discuss evolutionary theories associated with the "Lipid Divide" that resulted in the differentiation of bacterial and archaeal organisms. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Keywords: Archaeal lipids; Biosynthesis; Lipid chemical structures; Lipid divide; Membrane properties.
Copyright © 2016 Elsevier B.V. All rights reserved.
Similar articles
- The catalytic and structural basis of archaeal glycerophospholipid biosynthesis.de Kok NAW, Driessen AJM.de Kok NAW, et al.Extremophiles. 2022 Aug 17;26(3):29. doi: 10.1007/s00792-022-01277-w.Extremophiles. 2022.PMID:35976526Free PMC article.Review.
- Biosynthesis of archaeal membrane ether lipids.Jain S, Caforio A, Driessen AJ.Jain S, et al.Front Microbiol. 2014 Nov 26;5:641. doi: 10.3389/fmicb.2014.00641. eCollection 2014.Front Microbiol. 2014.PMID:25505460Free PMC article.Review.
- ConvertingEscherichia coli into an archaebacterium with a hybrid heterochiral membrane.Caforio A, Siliakus MF, Exterkate M, Jain S, Jumde VR, Andringa RLH, Kengen SWM, Minnaard AJ, Driessen AJM, van der Oost J.Caforio A, et al.Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):3704-3709. doi: 10.1073/pnas.1721604115. Epub 2018 Mar 19.Proc Natl Acad Sci U S A. 2018.PMID:29555770Free PMC article.
- Phylogenomic analysis of lipid biosynthetic genes of Archaea shed light on the 'lipid divide'.Villanueva L, Schouten S, Damsté JS.Villanueva L, et al.Environ Microbiol. 2017 Jan;19(1):54-69. doi: 10.1111/1462-2920.13361. Epub 2016 Jul 7.Environ Microbiol. 2017.PMID:27112361
- Formation of the ether lipids archaetidylglycerol and archaetidylethanolamine in Escherichia coli.Caforio A, Jain S, Fodran P, Siliakus M, Minnaard AJ, van der Oost J, Driessen AJ.Caforio A, et al.Biochem J. 2015 Sep 15;470(3):343-55. doi: 10.1042/BJ20150626. Epub 2015 Jul 20.Biochem J. 2015.PMID:26195826
Cited by
- The astrochemical evolutionary traits of phospholipid membrane homochirality.Bocková J, Jones NC, Hoffmann SV, Meinert C.Bocková J, et al.Nat Rev Chem. 2024 Sep;8(9):652-664. doi: 10.1038/s41570-024-00627-w. Epub 2024 Jul 18.Nat Rev Chem. 2024.PMID:39025922Review.
- The cell biology of archaea.van Wolferen M, Pulschen AA, Baum B, Gribaldo S, Albers SV.van Wolferen M, et al.Nat Microbiol. 2022 Nov;7(11):1744-1755. doi: 10.1038/s41564-022-01215-8. Epub 2022 Oct 17.Nat Microbiol. 2022.PMID:36253512Free PMC article.Review.
- Structure-function relationships in pure archaeal bipolar tetraether lipids.Bhattacharya A, Falk ID, Moss FR 3rd, Weiss TM, Tran KN, Burns NZ, Boxer SG.Bhattacharya A, et al.Chem Sci. 2024 Aug 7;15(35):14273-86. doi: 10.1039/d4sc03788j. Online ahead of print.Chem Sci. 2024.PMID:39149219Free PMC article.
- Minimal Out-of-Equilibrium Metabolism for Synthetic Cells: A Membrane Perspective.Bailoni E, Partipilo M, Coenradij J, Grundel DAJ, Slotboom DJ, Poolman B.Bailoni E, et al.ACS Synth Biol. 2023 Apr 21;12(4):922-946. doi: 10.1021/acssynbio.3c00062. Epub 2023 Apr 7.ACS Synth Biol. 2023.PMID:37027340Free PMC article.Review.
- N-glycosylation in Archaea - Expanding the process, components and roles of a universal post-translational modification.Vershinin Z, Zaretsky M, Eichler J.Vershinin Z, et al.BBA Adv. 2024 Aug 29;6:100120. doi: 10.1016/j.bbadva.2024.100120. eCollection 2024.BBA Adv. 2024.PMID:39296579Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous