Expression of somatostatin receptors 2 and 5 in circulating tumour cells from patients with neuroendocrine tumours
- PMID:27875519
- PMCID: PMC5155369
- DOI: 10.1038/bjc.2016.377
Expression of somatostatin receptors 2 and 5 in circulating tumour cells from patients with neuroendocrine tumours
Abstract
Background: Neuroendocrine tumours (NET) overexpress somatostatin receptors (SSTR) that can be targeted for therapy. Somatostatin receptor expression is routinely measured by molecular imaging but the resolution is insufficient to define heterogeneity. We hypothesised that SSTR expression could be measured on circulating tumour cells (CTCs) and used to investigate heterogeneity of expression and track changes during therapy.
Methods: MCF-7 cells were transfected with SSTR2 or 5 and spiked into donor blood for analysis by CellSearch. Optimum anti-SSTR antibody concentration and exposure time were determined, and flow cytometry was used to evaluate assay sensitivity. For clinical evaluation, blood was analysed by CellSearch, and SSTR2/5 immunohistochemistry was performed on matched tissue samples.
Results: Flow cytometry confirmed CellSearch was sensitive and that detection of SSTR was unaffected by the presence of somatostatin analogue up to a concentration of 100 ng ml-l. Thirty-one NET patients were recruited: grade; G1 (29%), G2 (45%), G3 (13%), primary site; midgut (58%), pancreatic (39%). Overall, 87% had SSTR-positive tumours according to somatostatin receptor scintigraphy or 68-Ga-DOTATE PET/CT. Circulating tumour cells were detected in 21 out of 31 patients (68%), of which 33% had evidence of heterogeneous expression of either SSTR2 (n=5) or SSTR5 (n=2).
Conclusions: Somatostatin receptors 2 and 5 are detectable on CTCs from NET patients and may be a useful biomarker for evaluating SSTR-targeted therapies and this is being prospectively evaluated in the Phase IV CALMNET trial (NCT02075606).
Conflict of interest statement
TM has received research funding for this work from Ipsen, MEC has received grant funding and consultancy fees from Ipsen.
Figures


References
- Caplin ME, Pavel M, Ćwikła JB, Phan AT, Raderer M, Sedláčková E, Cadiot G, Wolin EM, Capdevila J, Wall L, Rindi G, Langley A, Martinez S, Blumberg J, Ruszniewski P CLARINET Investigators (2014) Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med 371: 224–233. - PubMed
- de Herder WW, Hofland LJ, van der Lely AJ, SWJ Lamberts (2003) Somatostatin receptors in gastroentero-pancreatic neuroendocrine tumours. Endocr Relat Cancer 10: 451–458. - PubMed
- Fazio N, Cinieri S, Lorizzo K, Squadroni M, Orlando L, Spada F, Maiello E, Bodei L, Paganelli G, Delle Fave G, De Braud F (2010) Biological targeted therapies in patients with advanced enteropancreatic neuroendocrine carcinomas. Cancer Treat Rev 36(Suppl 3): S87–S94. - PubMed
- Flores LM, Kindelberger DW, Ligon AH, Capelletti M, Fiorentino M, Loda M, Cibas ES, Jänne PA, Krop IE (2010) Improving the yield of circulating tumour cells facilitates molecular characterisation and recognition of discordant HER2 amplification in breast cancer. Br J Cancer 102: 1495–1502. - PMC - PubMed
- Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, Kovacs P, Guggenberg Von E, Bale R, Virgolini IJ (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48: 508–518. - PubMed
MeSH terms
Substances
Associated data
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
