Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Wiley full text link Wiley
Full text links

Actions

Share

.2017 Apr;53(2):308-321.
doi: 10.1111/jpy.12492. Epub 2017 Jan 24.

Photoacclimatory and photoprotective responses to cold versus heat stress in high latitude reef corals

Affiliations

Photoacclimatory and photoprotective responses to cold versus heat stress in high latitude reef corals

Stefanie Pontasch et al. J Phycol.2017 Apr.

Abstract

Corals at the world's southernmost coral reef of Lord Howe Island (LHI) experience large temperature and light fluctuations and need to deal with periods of cold temperature (<18°C), but few studies have investigated how corals are able to cope with these conditions. Our study characterized the response of key photophysiological parameters, as well as photoacclimatory and photoprotective pigments (chlorophylls, xanthophylls, and β-carotene), to short-term (5-d) cold stress (~15°C; 7°C below control) in three LHI coral species hosting distinct Symbiodinium ITS2 types, and compared the coral-symbiont response to that under elevated temperature (~29°C; 7°C above control). Under cold stress, Stylophora sp. hosting Symbiodinium C118 showed the strongest effects with regard to losses of photochemical performance and symbionts. Pocillopora damicornis hosting Symbiodinium C100/C118 showed less severe bleaching responses to reduced temperature than to elevated temperature, while Porites heronensis hosting Symbiodinium C111* withstood both reduced and elevated temperature. Under cold stress, photoprotection in the form of xanthophyll de-epoxidation increased in unbleached P. heronensis (by 178%) and bleached Stylophora sp. (by 225%), while under heat stress this parameter increased in unbleached P. heronensis (by 182%) and in bleached P. damicornis (by 286%). The xanthophyll pool size was stable in all species at all temperatures. Our comparative study demonstrates high variability in the bleaching vulnerability of these coral species to low and high thermal extremes and shows that this variability is not solely determined by the ability to activate xanthophyll de-epoxidation.

Keywords: Acropora yongei; Pocillopora damicornis; Porites heronensis; Stylophora; Symbiodinium; Lord Howe Island; coral bleaching; photosynthesis; xanthophyll de-epoxidation.

© 2016 Phycological Society of America.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources

Full text links
Wiley full text link Wiley
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp