Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease
- PMID:27804953
- PMCID: PMC5097132
- DOI: 10.1038/ncomms13350
Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease
Abstract
The type II CRISPR-associated protein Cas9 recognizes and cleaves target DNA with the help of two guide RNAs (gRNAs; tracrRNA and crRNA). However, the detailed mechanisms and kinetics of these gRNAs in the Cas9 nuclease activity are unclear. Here, we investigate the structural roles of gRNAs in the CRISPR-Cas9 system by single-molecule spectroscopy and reveal a new conformation of inactive Cas9 that is thermodynamically more preferable than active apo-Cas9. We find that tracrRNA prevents Cas9 from changing into the inactive form and leads to the Cas9:gRNA complex. For the Cas9:gRNA complex, we identify sub-conformations of the RNA-DNA heteroduplex during R-loop expansion. Our single-molecule study indicates that the kinetics of the sub-conformations is controlled by the complementarity between crRNA and target DNA. We conclude that both tracrRNA and crRNA regulate the conformations and kinetics of the Cas9 complex, which are crucial in the DNA cleavage activity of the CRISPR-Cas9 system.
Figures





Similar articles
- Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance.Pausch P, Müller-Esparza H, Gleditzsch D, Altegoer F, Randau L, Bange G.Pausch P, et al.Mol Cell. 2017 Aug 17;67(4):622-632.e4. doi: 10.1016/j.molcel.2017.06.036. Epub 2017 Aug 3.Mol Cell. 2017.PMID:28781236
- Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.Yamano T, Zetsche B, Ishitani R, Zhang F, Nishimasu H, Nureki O.Yamano T, et al.Mol Cell. 2017 Aug 17;67(4):633-645.e3. doi: 10.1016/j.molcel.2017.06.035. Epub 2017 Aug 3.Mol Cell. 2017.PMID:28781234Free PMC article.
- The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E.Fonfara I, et al.Nature. 2016 Apr 28;532(7600):517-21. doi: 10.1038/nature17945. Epub 2016 Apr 20.Nature. 2016.PMID:27096362
- Programmable DNA cleavage in vitro by Cas9.Karvelis T, Gasiunas G, Siksnys V.Karvelis T, et al.Biochem Soc Trans. 2013 Dec;41(6):1401-6. doi: 10.1042/BST20130164.Biochem Soc Trans. 2013.PMID:24256227Review.
- CRISPR-Cas9 Structures and Mechanisms.Jiang F, Doudna JA.Jiang F, et al.Annu Rev Biophys. 2017 May 22;46:505-529. doi: 10.1146/annurev-biophys-062215-010822. Epub 2017 Mar 30.Annu Rev Biophys. 2017.PMID:28375731Review.
Cited by
- Electronic Circular Dichroism of the Cas9 Protein and gRNA:Cas9 Ribonucleoprotein Complex.Halat M, Klimek-Chodacka M, Orleanska J, Baranska M, Baranski R.Halat M, et al.Int J Mol Sci. 2021 Mar 13;22(6):2937. doi: 10.3390/ijms22062937.Int J Mol Sci. 2021.PMID:33805827Free PMC article.
- The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex.Zeng Y, Cui Y, Zhang Y, Zhang Y, Liang M, Chen H, Lan J, Song G, Lou J.Zeng Y, et al.Nucleic Acids Res. 2018 Jan 9;46(1):350-361. doi: 10.1093/nar/gkx1117.Nucleic Acids Res. 2018.PMID:29145633Free PMC article.
- Engineering CRISPR guide RNAs for programmable RNA sensors.Liu Y, Liu W, Wang B.Liu Y, et al.Biochem Soc Trans. 2023 Dec 20;51(6):2061-2070. doi: 10.1042/BST20221486.Biochem Soc Trans. 2023.PMID:37955062Free PMC article.
- In silico Analysis Suggests Common Appearance of scaRNAs in Type II Systems and Their Association With Bacterial Virulence.Guzina J, Chen WH, Stankovic T, Djordjevic M, Zdobnov E, Djordjevic M.Guzina J, et al.Front Genet. 2018 Oct 17;9:474. doi: 10.3389/fgene.2018.00474. eCollection 2018.Front Genet. 2018.PMID:30386377Free PMC article.
- Recent Advances in CRISPR-Cas Technologies for Synthetic Biology.Jeong SH, Lee HJ, Lee SJ.Jeong SH, et al.J Microbiol. 2023 Jan;61(1):13-36. doi: 10.1007/s12275-022-00005-5. Epub 2023 Feb 1.J Microbiol. 2023.PMID:36723794Free PMC article.Review.
References
- Jansen R., van Embden J. D. A., Gaastra W. & Schouls L. M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43, 1565–1575 (2002). - PubMed
- Bolotin A., Quinquis B., Sorokin A. & Ehrlich S. D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551–2561 (2005). - PubMed
- Barrangou R. et al.. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007). - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources