Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Atypon full text link Atypon Free PMC article
Full text links

Actions

.2016 Nov 11;354(6313):760-764.
doi: 10.1126/science.aag0776. Epub 2016 Oct 13.

Detection of human adaptation during the past 2000 years

Affiliations

Detection of human adaptation during the past 2000 years

Yair Field et al. Science..

Abstract

Detection of recent natural selection is a challenging problem in population genetics. Here we introduce the singleton density score (SDS), a method to infer very recent changes in allele frequencies from contemporary genome sequences. Applied to data from the UK10K Project, SDS reflects allele frequency changes in the ancestors of modern Britons during the past ~2000 to 3000 years. We see strong signals of selection at lactase and the major histocompatibility complex, and in favor of blond hair and blue eyes. For polygenic adaptation, we find that recent selection for increased height has driven allele frequency shifts across most of the genome. Moreover, we identify shifts associated with other complex traits, suggesting that polygenic adaptation has played a pervasive role in shaping genotypic and phenotypic variation in modern humans.

Copyright © 2016, American Association for the Advancement of Science.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Illustration of the SDS method
(A) Simulated frequency trajectory for a derived allele that was selected from standing variation starting 100 generations ago. (B) Corresponding genealogy of 3000 present-day genomes. Lineages carrying the derived allele (D) are in blue; ancestral (A) are in black. Enlargement of the genealogy illustrates that tip branches carrying the favored allele (blue) are on average shorter than those carrying the disfavored allele (black). (C) Because favored alleles (blue) tend to have shorter tip branches, their haplotypes tend to have lower singleton density. (D) For each individual, we compute the distance between nearest singletons around the test SNP. (E) Distribution of singleton distances as a function of genotype at the simulated test SNP. (F) Mean tip length t is estimated for each allele from a likelihood model. Unstandardized SDS is a log-ratio of estimated tip lengths; this is standardized to mean 0, variance 1 within bins of derived allele frequency. In this simulated example, SDS is highly significant (P = 1 × 10−17 in favor of the derived allele; relative to neutral simulations). Compare with illustration of drift simulation (fig. S1).
Fig. 2
Fig. 2. Properties of SDS
(A) Mean tip length as a function of sample size, for a demographic model with strong recent growth (14) (additional models shown in fig. S10). (B) Power simulations for SDS (mean ± SD) under three models of selection with current derived allele frequency of 0.7: continuous hard sweep (orange); selection starting 100 generations ago (cyan); and hard sweep that stopped 100 generations ago (black). Right panel: corresponding simulations for iHS. (C) SDS and iHS, for sweeps that stopped in the past (s = 0.10), followed by neutral drift. (D) Power to detect simulated selection from present variation using half of the UK10K data. We biasedly sampled 1500 genomes out of 3195 without replacement so as to change the frequencies at randomly chosen SNPs. (E) Allele frequency differences between extant populations (1000-Genomes) versus SDS or iHS. SDS is most correlated with the difference between northern and southern Europe, whereas iHS reflects Europe versus Africa divergence. GBR, British; CEU, Utah residents (northwest European ancestry); IBS, Iberians (Spain); TSI, Tuscans (Italy); CHB, Han (China); JPT, Japanese; YRI, Yoruba (Nigeria); LWK, Luhya (Kenya).
Fig. 3
Fig. 3. Overview of signals
(A) Manhattan plot of SDSP values indicates regions of genome-wide significance (P < 5 × 10−8;P values are two-sided tail probabilities of standard normal). (B) Distributions of singleton distances at the lactase locus, partitioned by genotypes at the causal site. Compare to simulated signals (Fig. 1E). (C) SDS signals for a curated set of segregating variants with known effects on pigmentation shows overall increase in derived allele frequencies (one-sidedP values). (D) Distribution of tSDS scores at 551 height-associated SNPs. tSDS is polarized so that tSDS > 0 implies increased frequency of the “tall” allele.
Fig. 4
Fig. 4. Signals of polygenic adaptation
(A) Mean tSDS of SNPs, where tSDS > 0 implies increased frequency of the “tall” allele in a recent family-based study (20). Thex axis is ordered from least significant SNPs (P ~ 1) to most significant (P ~ 0), and SNPs are placed into bins of 1000 consecutive SNPs for easier visualization. (B) Covariance of height Z score and SDS, as a function of LD score, provides evidence that selection on height is truly polygenic (P = 2 × 10−11; LD score regression). (C) QQ-plot testing for a correlation between GWAS Z score and tSDS for 43 traits. tSDS > 0 implies increased frequency of the “trait-increasing” allele. Significant traits that are also nominally significant by LD score regression (P < 0.05, one-sided test) are labeled.
See this image and copyright information in PMC

Comment in

References

    1. Vitti JJ, Grossman SR, Sabeti PC. Annu Rev Genet. 2013;47:97–120. - PubMed
    1. Bersaglieri T, et al. Am J Hum Genet. 2004;74:1111–1120. - PMC - PubMed
    1. Lamason RL, et al. Science. 2005;310:1782–1786. - PubMed
    1. Yi X, et al. Science. 2010;329:75–78. - PubMed
    1. Voight BF, Kudaravalli S, Wen X, Pritchard JK. PLOS Biol. 2006;4:e72. - PMC - PubMed

MeSH terms

Substances

Associated data

Grants and funding

LinkOut - more resources

Full text links
Atypon full text link Atypon Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp