Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Silverchair Information Systems full text link Silverchair Information Systems
Full text links

Actions

.2017 Jan/Feb;38(1):e14-e22.
doi: 10.1097/BCR.0000000000000432.

Transcriptional Analysis Reveals Evidence of Chronically Impeded ECM Turnover and Epithelium-to-Mesenchyme Transition in Scar Tissue Giving Rise to Marjolin's Ulcer

Affiliations

Transcriptional Analysis Reveals Evidence of Chronically Impeded ECM Turnover and Epithelium-to-Mesenchyme Transition in Scar Tissue Giving Rise to Marjolin's Ulcer

Sarthak Sinha et al. J Burn Care Res.2017 Jan/Feb.

Abstract

Marjolin's ulcer (MU) is an aggressive malignancy arising within chronic wounds. A major cause is unhealed burn injuries. This results in well-differentiated squamous cell carcinoma (SCC). This study aimed to elucidate transcriptional changes leading to malignancy by investigating differentially expressed genes in squamous cells present in a SCC compared with MU. MU tumor cells were isolated from histologically confirmed biopsy of SCC within an unhealed burn scar. Epithelial cells (ECs) adjacent to the tumor were co-isolated and a SCC cell line was commercially purchased. mRNA from all three samples was isolated and its expression was quantified using RNASeq. A threshold of log2fold change >2-fold in either direction was considered "differentially expressed." Gene expression analysis revealed distinct differences in gene expression in MU cells compared with EC (665 genes), EC and SCC (1673 genes). Enrichment analysis confirmed that pathways most affected included 1) elevation of genes associated with extracellular matrix organization/degradation, 2) activation of DNA damage, and 3) activation of cytokine signaling. Our analysis revealed two key insights about chronic wound microenvironment conducive to ulceration. First, in EC vs. MU comparison, downregulation of Collagen and Matrix metalloproteinase families suggests chronically impaired extracellular matrix turnover giving rise to a fibrotic microenvironment. Second, in SCC vs. MU comparison, dysregulation of cadherin-mediated cell-cell adhesions is suggestive of epithelial-to-mesenchymal transitions, similar to those during development. Acquisition of epithelial-to-mesenchymal transition may underlie the high metastatic rate in MU tumors. Taken together, this sheds light on mechanisms that underlie the divergent clinical features of these cutaneous cancers.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Silverchair Information Systems full text link Silverchair Information Systems
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp