Towards high-resolution retinal prostheses with direct optical addressing and inductive telemetry
- PMID:27529371
- DOI: 10.1088/1741-2560/13/5/056008
Towards high-resolution retinal prostheses with direct optical addressing and inductive telemetry
Abstract
Objective: Despite considerable advances in retinal prostheses over the last two decades, the resolution of restored vision has remained severely limited, well below the 20/200 acuity threshold of blindness. Towards drastic improvements in spatial resolution, we present a scalable architecture for retinal prostheses in which each stimulation electrode is directly activated by incident light and powered by a common voltage pulse transferred over a single wireless inductive link.
Approach: The hybrid optical addressability and electronic powering scheme provides separate spatial and temporal control over stimulation, and further provides optoelectronic gain for substantially lower light intensity thresholds than other optically addressed retinal prostheses using passive microphotodiode arrays. The architecture permits the use of high-density electrode arrays with ultra-high photosensitive silicon nanowires, obviating the need for excessive wiring and high-throughput data telemetry. Instead, the single inductive link drives the entire array of electrodes through two wires and provides external control over waveform parameters for common voltage stimulation.
Main results: A complete system comprising inductive telemetry link, stimulation pulse demodulator, charge-balancing series capacitor, and nanowire-based electrode device is integrated and validated ex vivo on rat retina tissue.
Significance: Measurements demonstrate control over retinal neural activity both by light and electrical bias, validating the feasibility of the proposed architecture and its system components as an important first step towards a high-resolution optically addressed retinal prosthesis.
Similar articles
- Wireless technologies for closed-loop retinal prostheses.Ng DC, Bai S, Yang J, Tran N, Skafidas E.Ng DC, et al.J Neural Eng. 2009 Dec;6(6):065004. doi: 10.1088/1741-2560/6/6/065004. Epub 2009 Oct 23.J Neural Eng. 2009.PMID:19850974Review.
- A fully-integrated high-compliance voltage SoC for epi-retinal and neural prostheses.Lo YK, Chen K, Gad P, Liu W.Lo YK, et al.IEEE Trans Biomed Circuits Syst. 2013 Dec;7(6):761-72. doi: 10.1109/TBCAS.2013.2297695.IEEE Trans Biomed Circuits Syst. 2013.PMID:24473541
- In Vivo Observations of Rapid Scattered Light Changes Associated with Neurophysiological Activity.Rector DM, Yao X, Harper RM, George JS.Rector DM, et al.In: Frostig RD, editor. In Vivo Optical Imaging of Brain Function. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 5.In: Frostig RD, editor. In Vivo Optical Imaging of Brain Function. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 5.PMID:26844322Free Books & Documents.Review.
- A system verification platform for high-density epiretinal prostheses.Chen K, Lo YK, Yang Z, Weiland JD, Humayun MS, Liu W.Chen K, et al.IEEE Trans Biomed Circuits Syst. 2013 Jun;7(3):326-37. doi: 10.1109/TBCAS.2012.2200103.IEEE Trans Biomed Circuits Syst. 2013.PMID:23853332
- Access resistance of stimulation electrodes as a function of electrode proximity to the retina.Majdi JA, Minnikanti S, Peixoto N, Agrawal A, Cohen ED.Majdi JA, et al.J Neural Eng. 2015 Feb;12(1):016006. doi: 10.1088/1741-2560/12/1/016006. Epub 2014 Dec 4.J Neural Eng. 2015.PMID:25474329
Cited by
- Electrical devices for visual restoration.Sharf T, Kalakuntla T, J Lee D, Gokoffski KK.Sharf T, et al.Surv Ophthalmol. 2022 May-Jun;67(3):793-800. doi: 10.1016/j.survophthal.2021.08.008. Epub 2021 Sep 4.Surv Ophthalmol. 2022.PMID:34487742Free PMC article.Review.
- A narrative review of cortical visual prosthesis systems: the latest progress and significance of nanotechnology for the future.Liu X, Chen P, Ding X, Liu A, Li P, Sun C, Guan H.Liu X, et al.Ann Transl Med. 2022 Jun;10(12):716. doi: 10.21037/atm-22-2858.Ann Transl Med. 2022.PMID:35845476Free PMC article.Review.
- Vertically integrated photo junction-field-effect transistor pixels for retinal prosthesis.Damle S, Liu YH, Arya S, Oesch NW, Lo YH.Damle S, et al.Biomed Opt Express. 2019 Dec 4;11(1):55-67. doi: 10.1364/BOE.11.000055. eCollection 2020 Jan 1.Biomed Opt Express. 2019.PMID:32010499Free PMC article.
- Differences in the spatial fidelity of evoked and spontaneous signals in the degenerating retina.Carleton M, Oesch NW.Carleton M, et al.Front Cell Neurosci. 2022 Nov 7;16:1040090. doi: 10.3389/fncel.2022.1040090. eCollection 2022.Front Cell Neurosci. 2022.PMID:36419935Free PMC article.
- Acute Rabbit Eye Model for Testing Subretinal Prostheses.Xiao Y, Wang Y, Li F, Lin T, Huffman K, Landeros S, Bosse B, Jing Y, Bartsch DU, Thorogood S, Freeman WR, Cheng L.Xiao Y, et al.Transl Vis Sci Technol. 2019 Oct 2;8(5):20. doi: 10.1167/tvst.8.5.20. eCollection 2019 Sep.Transl Vis Sci Technol. 2019.PMID:31602345Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources