Gene and Network Analysis of Common Variants Reveals Novel Associations in Multiple Complex Diseases
- PMID:27489002
- PMCID: PMC5068862
- DOI: 10.1534/genetics.116.188391
Gene and Network Analysis of Common Variants Reveals Novel Associations in Multiple Complex Diseases
Abstract
Genome-wide association (GWA) studies typically lack power to detect genotypes significantly associated with complex diseases, where different causal mutations of small effect may be present across cases. A common, tractable approach for identifying genomic elements associated with complex traits is to evaluate combinations of variants in known pathways or gene sets with shared biological function. Such gene-set analyses require the computation of gene-level P-values or gene scores; these gene scores are also useful when generating hypotheses for experimental validation. However, commonly used methods for generating GWA gene scores are computationally inefficient, biased by gene length, imprecise, or have low true positive rate (TPR) at low false positive rates (FPR), leading to erroneous hypotheses for functional validation. Here we introduce a new method, PEGASUS, for analytically calculating gene scores. PEGASUS produces gene scores with as much as 10 orders of magnitude higher numerical precision than competing methods. In simulation, PEGASUS outperforms existing methods, achieving up to 30% higher TPR when the FPR is fixed at 1%. We use gene scores from PEGASUS as input to HotNet2 to identify networks of interacting genes associated with multiple complex diseases and traits; this is the first application of HotNet2 to common variation. In ulcerative colitis and waist-hip ratio, we discover networks that include genes previously associated with these phenotypes, as well as novel candidate genes. In contrast, existing methods fail to identify these networks. We also identify networks for attention-deficit/hyperactivity disorder, in which GWA studies have yet to identify any significant SNPs.
Keywords: GWAS; common variants; complex diseases; pathway analysis; quantitative traits.
Copyright © 2016 by the Genetics Society of America.
Figures





Similar articles
- Weighted Interaction SNP Hub (WISH) network method for building genetic networks for complex diseases and traits using whole genome genotype data.Kogelman LJ, Kadarmideen HN.Kogelman LJ, et al.BMC Syst Biol. 2014;8 Suppl 2(Suppl 2):S5. doi: 10.1186/1752-0509-8-S2-S5. Epub 2014 Mar 13.BMC Syst Biol. 2014.PMID:25032480Free PMC article.
- WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.Carmelo VAO, Kogelman LJA, Madsen MB, Kadarmideen HN.Carmelo VAO, et al.BMC Bioinformatics. 2018 Jul 31;19(1):277. doi: 10.1186/s12859-018-2291-2.BMC Bioinformatics. 2018.PMID:30064383Free PMC article.
- Gene-set association and epistatic analyses reveal complex gene interaction networks affecting flowering time in a worldwide barley collection.He T, Hill CB, Angessa TT, Zhang XQ, Chen K, Moody D, Telfer P, Westcott S, Li C.He T, et al.J Exp Bot. 2019 Oct 24;70(20):5603-5616. doi: 10.1093/jxb/erz332.J Exp Bot. 2019.PMID:31504706Free PMC article.
- Molecular genetic studies of complex phenotypes.Marian AJ.Marian AJ.Transl Res. 2012 Feb;159(2):64-79. doi: 10.1016/j.trsl.2011.08.001. Epub 2011 Aug 31.Transl Res. 2012.PMID:22243791Free PMC article.Review.
- Detecting epistasis in human complex traits.Wei WH, Hemani G, Haley CS.Wei WH, et al.Nat Rev Genet. 2014 Nov;15(11):722-33. doi: 10.1038/nrg3747. Epub 2014 Sep 9.Nat Rev Genet. 2014.PMID:25200660Review.
Cited by
- Genetic variations analysis for complex brain disease diagnosis using machine learning techniques: opportunities and hurdles.Ahmed H, Alarabi L, El-Sappagh S, Soliman H, Elmogy M.Ahmed H, et al.PeerJ Comput Sci. 2021 Sep 20;7:e697. doi: 10.7717/peerj-cs.697. eCollection 2021.PeerJ Comput Sci. 2021.PMID:34616886Free PMC article.
- Novel Gene and Network Associations Found for Acute Lymphoblastic Leukemia Using Case-Control and Family-Based Studies in Multiethnic Populations.Nakka P, Archer NP, Xu H, Lupo PJ, Raphael BJ, Yang JJ, Ramachandran S.Nakka P, et al.Cancer Epidemiol Biomarkers Prev. 2017 Oct;26(10):1531-1539. doi: 10.1158/1055-9965.EPI-17-0360. Epub 2017 Jul 27.Cancer Epidemiol Biomarkers Prev. 2017.PMID:28751478Free PMC article.
- A network analysis to identify mediators of germline-driven differences in breast cancer prognosis.Escala-Garcia M, Abraham J, Andrulis IL, Anton-Culver H, Arndt V, Ashworth A, Auer PL, Auvinen P, Beckmann MW, Beesley J, Behrens S, Benitez J, Bermisheva M, Blomqvist C, Blot W, Bogdanova NV, Bojesen SE, Bolla MK, Børresen-Dale AL, Brauch H, Brenner H, Brucker SY, Burwinkel B, Caldas C, Canzian F, Chang-Claude J, Chanock SJ, Chin SF, Clarke CL, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, Dennis J, Devilee P, Dunn JA, Dunning AM, Dwek M, Earl HM, Eccles DM, Eliassen AH, Ellberg C, Evans DG, Fasching PA, Figueroa J, Flyger H, Gago-Dominguez M, Gapstur SM, García-Closas M, García-Sáenz JA, Gaudet MM, George A, Giles GG, Goldgar DE, González-Neira A, Grip M, Guénel P, Guo Q, Haiman CA, Håkansson N, Hamann U, Harrington PA, Hiller L, Hooning MJ, Hopper JL, Howell A, Huang CS, Huang G, Hunter DJ, Jakubowska A, John EM, Kaaks R, Kapoor PM, Keeman R, Kitahara CM, Koppert LB, Kraft P, Kristensen VN, Lambrechts D, Le Marchand L, Lejbkowicz F, Lindblom A, Lubiński J, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Martinez ME, Maurer T, Mavroudis D, Meindl A, Milne RL, Mulligan AM, Neuhausen SL, Nevanlinna H, Newman WG, Olshan AF, Olson JE, Olsson H, Orr N, Peterlongo P, Petridis C, P…See abstract for full author list ➔Escala-Garcia M, et al.Nat Commun. 2020 Jan 16;11(1):312. doi: 10.1038/s41467-019-14100-6.Nat Commun. 2020.PMID:31949161Free PMC article.
- Enrichment analyses identify shared associations for 25 quantitative traits in over 600,000 individuals from seven diverse ancestries.Smith SP, Shahamatdar S, Cheng W, Zhang S, Paik J, Graff M, Haiman C, Matise TC, North KE, Peters U, Kenny E, Gignoux C, Wojcik G, Crawford L, Ramachandran S.Smith SP, et al.Am J Hum Genet. 2022 May 5;109(5):871-884. doi: 10.1016/j.ajhg.2022.03.005. Epub 2022 Mar 28.Am J Hum Genet. 2022.PMID:35349783Free PMC article.
- Cohort-based association study of germline genetic variants with acute and chronic health complications of childhood cancer and its treatment: Genetic Risks for Childhood Cancer Complications Switzerland (GECCOS) study protocol.Waespe N, Strebel S, Nava T, Uppugunduri CRS, Marino D, Mattiello V, Otth M, Gumy-Pause F, Von Bueren AO, Baleydier F, Mader L, Spoerri A, Kuehni CE, Ansari M.Waespe N, et al.BMJ Open. 2022 Jan 24;12(1):e052131. doi: 10.1136/bmjopen-2021-052131.BMJ Open. 2022.PMID:35074812Free PMC article.
References
- Backes C., Meder B., Lai A., Stoll M., Rühle F., et al. , 2016. Pathway-based variant enrichment analysis on the example of dilated cardiomyopathy. Hum. Genet. 135: 31–40. - PubMed
- Baker M., Gaukrodger N., Mayosi B. M., Imrie H., Farrall M., et al. , 2005. Association between common polymorphisms of the proopiomelanocortin gene and body fat distribution: a family study. Diabetes 54: 2492–2496. - PubMed
MeSH terms
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources