cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness
- PMID:27471043
- PMCID: PMC4965859
- DOI: 10.1038/srep30742
cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness
Abstract
Immunologically-matched, induced pluripotent stem cell (iPSC)-derived photoreceptor precursor cells have the potential to restore vision to patients with retinal degenerative diseases like retinitis pigmentosa. The purpose of this study was to develop clinically-compatible methods for manufacturing photoreceptor precursor cells from adult skin in a non-profit cGMP environment. Biopsies were obtained from 35 adult patients with inherited retinal degeneration and fibroblast lines were established under ISO class 5 cGMP conditions. Patient-specific iPSCs were then generated, clonally expanded and validated. Post-mitotic photoreceptor precursor cells were generated using a stepwise cGMP-compliant 3D differentiation protocol. The recapitulation of the enhanced S-cone phenotype in retinal organoids generated from a patient with NR2E3 mutations demonstrated the fidelity of these protocols. Transplantation into immune compromised animals revealed no evidence of abnormal proliferation or tumor formation. These studies will enable clinical trials to test the safety and efficiency of patient-specific photoreceptor cell replacement in humans.
Figures




Similar articles
- Generation of Transplantable Retinal Photoreceptors from a Current Good Manufacturing Practice-Manufactured Human Induced Pluripotent Stem Cell Line.Zhu J, Reynolds J, Garcia T, Cifuentes H, Chew S, Zeng X, Lamba DA.Zhu J, et al.Stem Cells Transl Med. 2018 Feb;7(2):210-219. doi: 10.1002/sctm.17-0205. Epub 2017 Dec 21.Stem Cells Transl Med. 2018.PMID:29266841Free PMC article.
- Correction of NR2E3 Associated Enhanced S-cone Syndrome Patient-specific iPSCs using CRISPR-Cas9.Bohrer LR, Wiley LA, Burnight ER, Cooke JA, Giacalone JC, Anfinson KR, Andorf JL, Mullins RF, Stone EM, Tucker BA.Bohrer LR, et al.Genes (Basel). 2019 Apr 5;10(4):278. doi: 10.3390/genes10040278.Genes (Basel). 2019.PMID:30959774Free PMC article.
- Generation of Xeno-Free, cGMP-Compliant Patient-Specific iPSCs from Skin Biopsy.Wiley LA, Anfinson KR, Cranston CM, Kaalberg EE, Collins MM, Mullins RF, Stone EM, Tucker BA.Wiley LA, et al.Curr Protoc Stem Cell Biol. 2017 Aug 14;42:4A.12.1-4A.12.14. doi: 10.1002/cpsc.30.Curr Protoc Stem Cell Biol. 2017.PMID:28806854Free PMC article.
- Organoid technology for retinal repair.Llonch S, Carido M, Ader M.Llonch S, et al.Dev Biol. 2018 Jan 15;433(2):132-143. doi: 10.1016/j.ydbio.2017.09.028. Epub 2017 Dec 25.Dev Biol. 2018.PMID:29291970Review.
- Microfluidic processing of stem cells for autologous cell replacement.Stone NE, Voigt AP, Mullins RF, Sulchek T, Tucker BA.Stone NE, et al.Stem Cells Transl Med. 2021 Oct;10(10):1384-1393. doi: 10.1002/sctm.21-0080. Epub 2021 Jun 22.Stem Cells Transl Med. 2021.PMID:34156760Free PMC article.Review.
Cited by
- 3-D retina organoids: Building platforms for therapies of the future.Mazerik JN, Becker S, Sieving PA.Mazerik JN, et al.Cell Med. 2018 Jun 8;10:2155179018773758. doi: 10.1177/2155179018773758. eCollection 2018.Cell Med. 2018.PMID:32634188Free PMC article.
- Propensity of Patient-Derived iPSCs for Retinal Differentiation: Implications for Autologous Cell Replacement.Cooke JA, Voigt AP, Collingwood MA, Stone NE, Whitmore SS, DeLuca AP, Burnight ER, Anfinson KR, Vakulskas CA, Reutzel AJ, Daggett HT, Andorf JL, Stone EM, Mullins RF, Tucker BA.Cooke JA, et al.Stem Cells Transl Med. 2023 Jun 15;12(6):365-378. doi: 10.1093/stcltm/szad028.Stem Cells Transl Med. 2023.PMID:37221451Free PMC article.
- Generation of Transplantable Retinal Photoreceptors from a Current Good Manufacturing Practice-Manufactured Human Induced Pluripotent Stem Cell Line.Zhu J, Reynolds J, Garcia T, Cifuentes H, Chew S, Zeng X, Lamba DA.Zhu J, et al.Stem Cells Transl Med. 2018 Feb;7(2):210-219. doi: 10.1002/sctm.17-0205. Epub 2017 Dec 21.Stem Cells Transl Med. 2018.PMID:29266841Free PMC article.
- Retinal Organoids from Induced Pluripotent Stem Cells of Patients with Inherited Retinal Diseases: A Systematic Review.Lee YJ, Jo DH.Lee YJ, et al.Stem Cell Rev Rep. 2025 Jan;21(1):167-197. doi: 10.1007/s12015-024-10802-7. Epub 2024 Oct 18.Stem Cell Rev Rep. 2025.PMID:39422807Free PMC article.Review.
- Development of High-Resolution Three-Dimensional-Printed Extracellular Matrix Scaffolds and Their Compatibility with Pluripotent Stem Cells and Early Retinal Cells.Shrestha A, Allen BN, Wiley LA, Tucker BA, Worthington KS.Shrestha A, et al.J Ocul Pharmacol Ther. 2020 Jan/Feb;36(1):42-55. doi: 10.1089/jop.2018.0146. Epub 2019 Aug 16.J Ocul Pharmacol Ther. 2020.PMID:31414943Free PMC article.
References
- Cideciyan A. V. et al.. Centrosomal-ciliary gene CEP290/NPHP6 mutations result in blindness with unexpected sparing of photoreceptors and visual brain: implications for therapy of Leber congenital amaurosis. Hum. Mutat. 28, 1074–1083 (2007). - PubMed
- Klassen H. J. et al.. Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Invest. Ophthalmol. Vis. Sci. 45, 4167–4173 (2004). - PubMed
- MacLaren R. E. et al.. Retinal repair by transplantation of photoreceptor precursors. Nature 444, 203–207 (2006). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous