Why marine phytoplankton calcify
- PMID:27453937
- PMCID: PMC4956192
- DOI: 10.1126/sciadv.1501822
Why marine phytoplankton calcify
Abstract
Calcifying marine phytoplankton-coccolithophores- are some of the most successful yet enigmatic organisms in the ocean and are at risk from global change. To better understand how they will be affected, we need to know "why" coccolithophores calcify. We review coccolithophorid evolutionary history and cell biology as well as insights from recent experiments to provide a critical assessment of the costs and benefits of calcification. We conclude that calcification has high energy demands and that coccolithophores might have calcified initially to reduce grazing pressure but that additional benefits such as protection from photodamage and viral/bacterial attack further explain their high diversity and broad spectrum ecology. The cost-benefit aspect of these traits is illustrated by novel ecosystem modeling, although conclusive observations remain limited. In the future ocean, the trade-off between changing ecological and physiological costs of calcification and their benefits will ultimately decide how this important group is affected by ocean acidification and global warming.
Keywords: Coccolithophores; calcification; ecological and physiological costs and benefits; ecosystem modeling; photosynthesis; trade-offs.
Figures





Similar articles
- Sensitivity of coccolithophores to carbonate chemistry and ocean acidification.Beaufort L, Probert I, de Garidel-Thoron T, Bendif EM, Ruiz-Pino D, Metzl N, Goyet C, Buchet N, Coupel P, Grelaud M, Rost B, Rickaby RE, de Vargas C.Beaufort L, et al.Nature. 2011 Aug 3;476(7358):80-3. doi: 10.1038/nature10295.Nature. 2011.PMID:21814280
- The role of coccolithophore calcification in bioengineering their environment.Flynn KJ, Clark DR, Wheeler G.Flynn KJ, et al.Proc Biol Sci. 2016 Jun 29;283(1833):20161099. doi: 10.1098/rspb.2016.1099.Proc Biol Sci. 2016.PMID:27358373Free PMC article.
- Decrease in coccolithophore calcification and CO2 since the middle Miocene.Bolton CT, Hernández-Sánchez MT, Fuertes MÁ, González-Lemos S, Abrevaya L, Mendez-Vicente A, Flores JA, Probert I, Giosan L, Johnson J, Stoll HM.Bolton CT, et al.Nat Commun. 2016 Jan 14;7:10284. doi: 10.1038/ncomms10284.Nat Commun. 2016.PMID:26762469Free PMC article.
- Coccolithophore calcification: Changing paradigms in changing oceans.Brownlee C, Langer G, Wheeler GL.Brownlee C, et al.Acta Biomater. 2021 Jan 15;120:4-11. doi: 10.1016/j.actbio.2020.07.050. Epub 2020 Aug 4.Acta Biomater. 2021.PMID:32763469Review.
- Ocean acidification and its potential effects on marine ecosystems.Guinotte JM, Fabry VJ.Guinotte JM, et al.Ann N Y Acad Sci. 2008;1134:320-42. doi: 10.1196/annals.1439.013.Ann N Y Acad Sci. 2008.PMID:18566099Review.
Cited by
- Microfluidic Impedance Cytometry for Single-Cell Particulate Inorganic Carbon:Particulate Organic Carbon Measurements of Calcifying Algae.de Bruijn DS, Van de Waal DB, Helmsing NR, Olthuis W, van den Berg A.de Bruijn DS, et al.Glob Chall. 2022 Dec 7;7(3):2200151. doi: 10.1002/gch2.202200151. eCollection 2023 Mar.Glob Chall. 2022.PMID:36910468Free PMC article.
- The solubility product controls the rate of calcite dissolution in pure water and seawater.Yang M, Tan L, Batchelor-McAuley C, Compton RG.Yang M, et al.Chem Sci. 2024 Jan 10;15(7):2464-2472. doi: 10.1039/d3sc04063a. eCollection 2024 Feb 14.Chem Sci. 2024.PMID:38362434Free PMC article.
- The mutual interplay between calcification and coccolithovirus infection.Johns CT, Grubb AR, Nissimov JI, Natale F, Knapp V, Mui A, Fredricks HF, Van Mooy BAS, Bidle KD.Johns CT, et al.Environ Microbiol. 2019 Jun;21(6):1896-1915. doi: 10.1111/1462-2920.14362. Epub 2018 Sep 18.Environ Microbiol. 2019.PMID:30043404Free PMC article.
- The elements of life: A biocentric tour of the periodic table.Remick KA, Helmann JD.Remick KA, et al.Adv Microb Physiol. 2023;82:1-127. doi: 10.1016/bs.ampbs.2022.11.001. Epub 2023 Jan 30.Adv Microb Physiol. 2023.PMID:36948652Free PMC article.
- New species of Kuqaia from the Lower Jurassic of Sweden indicates a possible water flea (Crustacea: Branchiopoda) affinity.Peng J, Slater SM, McLoughlin S, Vajda V.Peng J, et al.PLoS One. 2023 Jun 7;18(6):e0282247. doi: 10.1371/journal.pone.0282247. eCollection 2023.PLoS One. 2023.PMID:37285340Free PMC article.
References
- Young J. R., Geisen M., Probert I., A review of selected aspects of coccolithophore biology with for paleobiodiversity estimation implications. Micropaleontology 51, 267–288 (2005).
- Poulton A. J., Adey T. R., Balch W. M., Holligan P. M., Relating coccolithophore calcification rates to phytoplankton community dynamics: Regional differences and implications for carbon export. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 54, 538–557 (2007).
- Poulton A. J., Painter S. C., Young J. R., Bates N. R., Bowler B., Drapeau D., Lyczsckowski E., Balch W. M., The 2008 Emiliania huxleyi bloom along the Patagonian Shelf: Ecology, biogeochemistry, and cellular calcification. Global Biogeochem. Cycles 27, 1023–1033 (2013).
- Milliman J. D., Droxler A. W., Neritic and pelagic carbonate sedimentation in the marine environment: Ignorance is not bliss. Geol. Rundsch. 85, 496–504 (1996).
- Ridgwell A., Zeebe R., The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234, 299–315 (2005).
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources