Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy
- PMID:27281205
- DOI: 10.1038/nature18300
Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy
Abstract
Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encoded antigen by DC populations and macrophages in various lymphoid compartments. RNA-LPX triggers interferon-α (IFNα) release by plasmacytoid DCs and macrophages. Consequently, DC maturation in situ and inflammatory immune mechanisms reminiscent of those in the early systemic phase of viral infection are activated. We show that RNA-LPX encoding viral or mutant neo-antigens or endogenous self-antigens induce strong effector and memory T-cell responses, and mediate potent IFNα-dependent rejection of progressive tumours. A phase I dose-escalation trial testing RNA-LPX that encode shared tumour antigens is ongoing. In the first three melanoma patients treated at a low-dose level, IFNα and strong antigen-specific T-cell responses were induced, supporting the identified mode of action and potency. As any polypeptide-based antigen can be encoded as RNA, RNA-LPX represent a universally applicable vaccine class for systemic DC targeting and synchronized induction of both highly potent adaptive as well as type-I-IFN-mediated innate immune mechanisms for cancer immunotherapy.
Comment in
- Immunotherapy: Cancer vaccine triggers antiviral-type defences.De Vries J, Figdor C.De Vries J, et al.Nature. 2016 Jun 16;534(7607):329-31. doi: 10.1038/nature18443. Epub 2016 Jun 1.Nature. 2016.PMID:27281206No abstract available.
Similar articles
- Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients.Bonehill A, Van Nuffel AM, Corthals J, Tuyaerts S, Heirman C, François V, Colau D, van der Bruggen P, Neyns B, Thielemans K.Bonehill A, et al.Clin Cancer Res. 2009 May 15;15(10):3366-75. doi: 10.1158/1078-0432.CCR-08-2982. Epub 2009 May 5.Clin Cancer Res. 2009.PMID:19417017
- Influenza A infection enhances cross-priming of CD8+ T cells to cell-associated antigens in a TLR7- and type I IFN-dependent fashion.Wei J, Waithman J, Lata R, Mifsud NA, Cebon J, Kay T, Smyth MJ, Sadler AJ, Chen W.Wei J, et al.J Immunol. 2010 Nov 15;185(10):6013-22. doi: 10.4049/jimmunol.1002129. Epub 2010 Oct 18.J Immunol. 2010.PMID:20956347
- Immunotherapy: Cancer vaccine triggers antiviral-type defences.De Vries J, Figdor C.De Vries J, et al.Nature. 2016 Jun 16;534(7607):329-31. doi: 10.1038/nature18443. Epub 2016 Jun 1.Nature. 2016.PMID:27281206No abstract available.
- Review: dendritic cell immunotherapy for melanoma.Hadzantonis M, O'Neill H.Hadzantonis M, et al.Cancer Biother Radiopharm. 1999 Feb;14(1):11-22. doi: 10.1089/cbr.1999.14.11.Cancer Biother Radiopharm. 1999.PMID:10850282Review.
- Dendritic cell vaccines for cancer immunotherapy.Timmerman JM, Levy R.Timmerman JM, et al.Annu Rev Med. 1999;50:507-29. doi: 10.1146/annurev.med.50.1.507.Annu Rev Med. 1999.PMID:10073291Review.
Cited by
- Efficient hepatic delivery and protein expression enabled by optimized mRNA and ionizable lipid nanoparticle.Yang T, Li C, Wang X, Zhao D, Zhang M, Cao H, Liang Z, Xiao H, Liang XJ, Weng Y, Huang Y.Yang T, et al.Bioact Mater. 2020 Jul 13;5(4):1053-1061. doi: 10.1016/j.bioactmat.2020.07.003. eCollection 2020 Dec.Bioact Mater. 2020.PMID:32691013Free PMC article.
- Supramolecular assembly of polycation/mRNA nanoparticles and in vivo monocyte programming.Hu Y, Tzeng SY, Cheng L, Lin J, Villabona-Rueda A, Yu S, Li S, Schneiderman Z, Zhu Y, Ma J, Wilson DR, Shannon SR, Warren T, Rui Y, Qiu C, Kavanagh EW, Luly KM, Zhang Y, Korinetz N, D'Alessio FR, Wang TH, Kokkoli E, Reddy SK, Luijten E, Green JJ, Mao HQ.Hu Y, et al.Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2400194121. doi: 10.1073/pnas.2400194121. Epub 2024 Aug 22.Proc Natl Acad Sci U S A. 2024.PMID:39172792Free PMC article.
- Fundamentals of Cancer Immunology and Their Application to Cancer Vaccines.Bullock TNJ.Bullock TNJ.Clin Transl Sci. 2021 Jan;14(1):120-131. doi: 10.1111/cts.12856. Epub 2020 Oct 29.Clin Transl Sci. 2021.PMID:32770735Free PMC article.
- Therapeutic RNA Delivery for COVID and Other Diseases.Dobrowolski C, Paunovska K, Hatit MZC, Lokugamage MP, Dahlman JE.Dobrowolski C, et al.Adv Healthc Mater. 2021 Aug;10(15):e2002022. doi: 10.1002/adhm.202002022. Epub 2021 Mar 4.Adv Healthc Mater. 2021.PMID:33661555Free PMC article.Review.
- Cationic Nanoparticle-Based Cancer Vaccines.Heuts J, Jiskoot W, Ossendorp F, van der Maaden K.Heuts J, et al.Pharmaceutics. 2021 Apr 21;13(5):596. doi: 10.3390/pharmaceutics13050596.Pharmaceutics. 2021.PMID:33919378Free PMC article.Review.
References
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous