Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Share

Review
.2016 Aug;44(8):696-705.
doi: 10.1016/j.exphem.2016.05.010. Epub 2016 May 25.

GATA-related hematologic disorders

Affiliations
Free article
Review

GATA-related hematologic disorders

Ritsuko Shimizu et al. Exp Hematol.2016 Aug.
Free article

Abstract

The transcription factors GATA1 and GATA2 are fundamental regulators of hematopoiesis and have overlapping expression profiles. GATA2 is expressed in hematopoietic stem cells and early erythroid-megakaryocytic progenitors and activates a certain set of early-phase genes, including the GATA2 gene itself. GATA2 also initiates GATA1 gene expression. In contrast, GATA1 is expressed in relatively mature erythroid progenitors and facilitates the expression of genes associated with differentiation, including the GATA1 gene itself; however, GATA1 represses the expression of GATA2. Switching the GATA factors from GATA2 to GATA1 appears to be one of the key regulatory mechanisms underlying erythroid differentiation. Loss-of-function analyses using mice in vivo have indicated that GATA2 and GATA1 are functionally nonredundant and that neither can compensate for the absence of the other. However, transgenic expression of GATA2 under the transcriptional regulation of the Gata1 gene rescues lethal dyserythropoiesis in GATA1-deficient mice, illustrating that the dynamic expression profiles of these GATA factors are critically important for the maintenance of hematopoietic homeostasis. Analysis of naturally occurring leukemias in GATA1-knockdown mice revealed that leukemic stem cells undergo functional alterations in response to exposure to chemotherapeutic agents. This mechanism may also underlie the aggravating features of relapsing leukemias. Recent hematologic analyses have suggested that disturbances in the balance of the GATA factors are associated with specific types of hematopoietic disorders. Here, we describe GATA1- and GATA2-related hematologic diseases, focusing on the regulation of GATA factor gene expression.

Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp