Global Rebalancing of Cellular Resources by Pleiotropic Point Mutations Illustrates a Multi-scale Mechanism of Adaptive Evolution
- PMID:27135538
- PMCID: PMC4853925
- DOI: 10.1016/j.cels.2016.04.003
Global Rebalancing of Cellular Resources by Pleiotropic Point Mutations Illustrates a Multi-scale Mechanism of Adaptive Evolution
Abstract
Pleiotropic regulatory mutations affect diverse cellular processes, posing a challenge to our understanding of genotype-phenotype relationships across multiple biological scales. Adaptive laboratory evolution (ALE) allows for such mutations to be found and characterized in the context of clear selection pressures. Here, several ALE-selected single-mutation variants in RNA polymerase (RNAP) of Escherichia coli are detailed using an integrated multi-scale experimental and computational approach. While these mutations increase cellular growth rates in steady environments, they reduce tolerance to stress and environmental fluctuations. We detail structural changes in the RNAP that rewire the transcriptional machinery to rebalance proteome and energy allocation toward growth and away from several hedging and stress functions. We find that while these mutations occur in diverse locations in the RNAP, they share a common adaptive mechanism. In turn, these findings highlight the resource allocation trade-offs organisms face and suggest how the structure of the regulatory network enhances evolvability.
Copyright © 2016 Elsevier Inc. All rights reserved.
Figures






Similar articles
- The hallmarks of a tradeoff in transcriptomes that balances stress and growth functions.Dalldorf C, Rychel K, Szubin R, Hefner Y, Patel A, Zielinski DC, Palsson BO.Dalldorf C, et al.mSystems. 2024 Jul 23;9(7):e0030524. doi: 10.1128/msystems.00305-24. Epub 2024 Jun 3.mSystems. 2024.PMID:38829048Free PMC article.
- Causal mutations from adaptive laboratory evolution are outlined by multiple scales of genome annotations and condition-specificity.Phaneuf PV, Yurkovich JT, Heckmann D, Wu M, Sandberg TE, King ZA, Tan J, Palsson BO, Feist AM.Phaneuf PV, et al.BMC Genomics. 2020 Jul 25;21(1):514. doi: 10.1186/s12864-020-06920-4.BMC Genomics. 2020.PMID:32711472Free PMC article.
- Genotype-by-environment interactions due to antibiotic resistance and adaptation in Escherichia coli.Hall AR.Hall AR.J Evol Biol. 2013 Aug;26(8):1655-64. doi: 10.1111/jeb.12172. Epub 2013 May 23.J Evol Biol. 2013.PMID:23701170
- The Old and New Testaments of gene regulation. Evolution of multi-subunit RNA polymerases and co-evolution of eukaryote complexity with the RNAP II CTD.Burton ZF.Burton ZF.Transcription. 2014;5(3):e28674. doi: 10.4161/trns.28674.Transcription. 2014.PMID:25764332Free PMC article.Review.
- Molecular and cellular bases of adaptation to a changing environment in microorganisms.Bleuven C, Landry CR.Bleuven C, et al.Proc Biol Sci. 2016 Oct 26;283(1841):20161458. doi: 10.1098/rspb.2016.1458.Proc Biol Sci. 2016.PMID:27798299Free PMC article.Review.
Cited by
- Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution.Mohamed ET, Wang S, Lennen RM, Herrgård MJ, Simmons BA, Singer SW, Feist AM.Mohamed ET, et al.Microb Cell Fact. 2017 Nov 16;16(1):204. doi: 10.1186/s12934-017-0819-1.Microb Cell Fact. 2017.PMID:29145855Free PMC article.
- Laboratory evolution reveals a two-dimensional rate-yield tradeoff in microbial metabolism.Cheng C, O'Brien EJ, McCloskey D, Utrilla J, Olson C, LaCroix RA, Sandberg TE, Feist AM, Palsson BO, King ZA.Cheng C, et al.PLoS Comput Biol. 2019 Jun 3;15(6):e1007066. doi: 10.1371/journal.pcbi.1007066. eCollection 2019 Jun.PLoS Comput Biol. 2019.PMID:31158228Free PMC article.
- Metabolism of the fast-growing bacterium Vibrio natriegens elucidated by13C metabolic flux analysis.Long CP, Gonzalez JE, Cipolla RM, Antoniewicz MR.Long CP, et al.Metab Eng. 2017 Nov;44:191-197. doi: 10.1016/j.ymben.2017.10.008. Epub 2017 Oct 16.Metab Eng. 2017.PMID:29042298Free PMC article.
- A universal trade-off between growth and lag in fluctuating environments.Basan M, Honda T, Christodoulou D, Hörl M, Chang YF, Leoncini E, Mukherjee A, Okano H, Taylor BR, Silverman JM, Sanchez C, Williamson JR, Paulsson J, Hwa T, Sauer U.Basan M, et al.Nature. 2020 Aug;584(7821):470-474. doi: 10.1038/s41586-020-2505-4. Epub 2020 Jul 15.Nature. 2020.PMID:32669712Free PMC article.
- Regulatory perturbations of ribosome allocation in bacteria reshape the growth proteome with a trade-off in adaptation capacity.Hidalgo D, Martínez-Ortiz CA, Palsson BO, Jiménez JI, Utrilla J.Hidalgo D, et al.iScience. 2022 Feb 7;25(3):103879. doi: 10.1016/j.isci.2022.103879. eCollection 2022 Mar 18.iScience. 2022.PMID:35243241Free PMC article.
References
- Bar-Nahum G, Epshtein V, Ruckenstein AE, Rafikov R, Mustaev A, Nudler E. A ratchet mechanism of transcription elongation and its control. Cell. 2005;120:183–193. - PubMed
- Barker MM, Gaal T, Gourse RL. Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. Journal of molecular biology. 2001;305:689–702. - PubMed
- Cashel M, Hsu LM, Hernandez VJ. Changes in conserved region 3 of Escherichia coli sigma 70 reduce abortive transcription and enhance promoter escape. J Biol Chem. 2003;278:5539–5547. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases