Phylogenomic analysis of lipid biosynthetic genes of Archaea shed light on the 'lipid divide'
- PMID:27112361
- DOI: 10.1111/1462-2920.13361
Phylogenomic analysis of lipid biosynthetic genes of Archaea shed light on the 'lipid divide'
Abstract
The lipid membrane is one of the most characteristic traits distinguishing the three domains of life. Membrane lipids of Bacteria and Eukarya are composed of fatty acids linked to glycerol-3-phosphate (G3P) via ester bonds, while those of Archaea possess isoprene-based alkyl chains linked by ether linkages to glycerol-1-phosphate (G1P), resulting in the opposite stereochemistry of the glycerol phosphate backbone. This 'lipid divide' has raised questions on the evolution of microbial life since eukaryotes are thought to have evolved from the Archaea, requiring a radical change in membrane composition. Here, we searched for homologs of enzymes involved in membrane lipid and fatty acid synthesis in a wide variety of archaeal genomes and performed phylogenomic analyses. We found that two uncultured archaeal groups, i.e. marine euryarchaeota group II/III and 'Lokiarchaeota', recently discovered descendants of the archaeal ancestor leading to eukaryotes, lack the gene to synthesize G1P and, consequently, the capacity to synthesize archaeal membrane lipids. However, our analyses reveal their genetic capacity to synthesize G3P-based 'chimeric lipids' with either two ether-bound isoprenoidal chains or with an ester-bound fatty acid instead of an ether-bound isoprenoid. These archaea may reflect the 'archaea-to-eukaryote' membrane transition stage which have led to the current 'lipid divide'.
© 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Similar articles
- Origins and evolution of isoprenoid lipid biosynthesis in archaea.Boucher Y, Kamekura M, Doolittle WF.Boucher Y, et al.Mol Microbiol. 2004 Apr;52(2):515-27. doi: 10.1111/j.1365-2958.2004.03992.x.Mol Microbiol. 2004.PMID:15066037
- Bridging the membrane lipid divide: bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids.Villanueva L, von Meijenfeldt FAB, Westbye AB, Yadav S, Hopmans EC, Dutilh BE, Damsté JSS.Villanueva L, et al.ISME J. 2021 Jan;15(1):168-182. doi: 10.1038/s41396-020-00772-2. Epub 2020 Sep 14.ISME J. 2021.PMID:32929208Free PMC article.
- Disentangling the lipid divide: Identification of key enzymes for the biosynthesis of membrane-spanning and ether lipids in Bacteria.Sahonero-Canavesi DX, Siliakus MF, Abdala Asbun A, Koenen M, von Meijenfeldt FAB, Boeren S, Bale NJ, Engelman JC, Fiege K, Strack van Schijndel L, Sinninghe Damsté JS, Villanueva L.Sahonero-Canavesi DX, et al.Sci Adv. 2022 Dec 16;8(50):eabq8652. doi: 10.1126/sciadv.abq8652. Epub 2022 Dec 16.Sci Adv. 2022.PMID:36525503
- Phylogenomic investigation of phospholipid synthesis in archaea.Lombard J, López-García P, Moreira D.Lombard J, et al.Archaea. 2012;2012:630910. doi: 10.1155/2012/630910. Epub 2012 Dec 16.Archaea. 2012.PMID:23304072Free PMC article.Review.
- Isoprenoid biosynthesis in Archaea--biochemical and evolutionary implications.Matsumi R, Atomi H, Driessen AJ, van der Oost J.Matsumi R, et al.Res Microbiol. 2011 Jan;162(1):39-52. doi: 10.1016/j.resmic.2010.10.003. Epub 2010 Oct 27.Res Microbiol. 2011.PMID:21034816Review.
Cited by
- The catalytic and structural basis of archaeal glycerophospholipid biosynthesis.de Kok NAW, Driessen AJM.de Kok NAW, et al.Extremophiles. 2022 Aug 17;26(3):29. doi: 10.1007/s00792-022-01277-w.Extremophiles. 2022.PMID:35976526Free PMC article.Review.
- Asgard archaea illuminate the origin of eukaryotic cellular complexity.Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, Seitz KW, Anantharaman K, Starnawski P, Kjeldsen KU, Stott MB, Nunoura T, Banfield JF, Schramm A, Baker BJ, Spang A, Ettema TJ.Zaremba-Niedzwiedzka K, et al.Nature. 2017 Jan 19;541(7637):353-358. doi: 10.1038/nature21031. Epub 2017 Jan 11.Nature. 2017.PMID:28077874
- Incorporation, fate, and turnover of free fatty acids in cyanobacteria.Kahn A, Oliveira P, Cuau M, Leão PN.Kahn A, et al.FEMS Microbiol Rev. 2023 Mar 10;47(2):fuad015. doi: 10.1093/femsre/fuad015.FEMS Microbiol Rev. 2023.PMID:37061785Free PMC article.Review.
- A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius.Wang K, Sybers D, Maklad HR, Lemmens L, Lewyllie C, Zhou X, Schult F, Bräsen C, Siebers B, Valegård K, Lindås AC, Peeters E.Wang K, et al.Nat Commun. 2019 Apr 4;10(1):1542. doi: 10.1038/s41467-019-09479-1.Nat Commun. 2019.PMID:30948713Free PMC article.
- Hexamerization and thermostability emerged very early during geranylgeranylglyceryl phosphate synthase evolution.Kropp C, Straub K, Linde M, Babinger P.Kropp C, et al.Protein Sci. 2021 Mar;30(3):583-596. doi: 10.1002/pro.4016. Epub 2021 Jan 11.Protein Sci. 2021.PMID:33342010Free PMC article.
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources