Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy
- PMID:26998515
- PMCID: PMC4794275
- DOI: 10.1038/npjbcancer.2015.25
Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy
Abstract
Deleterious inflammation is a primary feature of breast cancer. Accumulating evidence demonstrates that macrophages, the most abundant leukocyte population in mammary tumors, have a critical role at each stage of cancer progression. Such tumor-associated macrophages facilitate neoplastic transformation, tumor immune evasion and the subsequent metastatic cascade. Herein, we discuss the dynamic process whereby molecular and cellular features of the tumor microenvironment act to license tissue-repair mechanisms of macrophages, fostering angiogenesis, metastasis and the support of cancer stem cells. We illustrate how tumors induce, then exploit trophic macrophages to subvert innate and adaptive immune responses capable of destroying malignant cells. Finally, we discuss compelling evidence from murine models of cancer and early clinical trials in support of macrophage-targeted intervention strategies with the potential to dramatically reduce breast cancer morbidity and mortality.
Conflict of interest statement
The authors declare no conflict of interest.
Figures


Similar articles
- The role of tumor-associated macrophage in breast cancer biology.Choi J, Gyamfi J, Jang H, Koo JS.Choi J, et al.Histol Histopathol. 2018 Feb;33(2):133-145. doi: 10.14670/HH-11-916. Epub 2017 Jul 6.Histol Histopathol. 2018.PMID:28681373Review.
- STAT5 is activated in macrophages by breast cancer cell-derived factors and regulates macrophage function in the tumor microenvironment.Jesser EA, Brady NJ, Huggins DN, Witschen PM, O'Connor CH, Schwertfeger KL.Jesser EA, et al.Breast Cancer Res. 2021 Nov 7;23(1):104. doi: 10.1186/s13058-021-01481-0.Breast Cancer Res. 2021.PMID:34743736Free PMC article.
- Anti-inflammatory signaling by mammary tumor cells mediates prometastatic macrophage polarization in an innovative intraductal mouse model for triple-negative breast cancer.Steenbrugge J, Breyne K, Demeyere K, De Wever O, Sanders NN, Van Den Broeck W, Colpaert C, Vermeulen P, Van Laere S, Meyer E.Steenbrugge J, et al.J Exp Clin Cancer Res. 2018 Aug 15;37(1):191. doi: 10.1186/s13046-018-0860-x.J Exp Clin Cancer Res. 2018.PMID:30111338Free PMC article.
- Subverted macrophages in the triple-negative breast cancer ecosystem.Shang L, Zhong Y, Yao Y, Liu C, Wang L, Zhang W, Liu J, Wang X, Sun C.Shang L, et al.Biomed Pharmacother. 2023 Oct;166:115414. doi: 10.1016/j.biopha.2023.115414. Epub 2023 Sep 4.Biomed Pharmacother. 2023.PMID:37660651Review.
- Macrophages: Regulators of the Inflammatory Microenvironment during Mammary Gland Development and Breast Cancer.Brady NJ, Chuntova P, Schwertfeger KL.Brady NJ, et al.Mediators Inflamm. 2016;2016:4549676. doi: 10.1155/2016/4549676. Epub 2016 Jan 17.Mediators Inflamm. 2016.PMID:26884646Free PMC article.Review.
Cited by
- Assessment of Tumor-Associated Tissue Eosinophilia (TATE) and Tumor-Associated Macrophages (TAMs) in Canine Transitional Cell Carcinoma of the Urinary Bladder.Files R, Okwu V, Topa N, Sousa M, Silva F, Rodrigues P, Delgado L, Prada J, Pires I.Files R, et al.Animals (Basel). 2024 Feb 5;14(3):519. doi: 10.3390/ani14030519.Animals (Basel). 2024.PMID:38338162Free PMC article.
- Hyperglycemia-Induced miR-467 Drives Tumor Inflammation and Growth in Breast Cancer.Gajeton J, Krukovets I, Muppala S, Verbovetskiy D, Zhang J, Stenina-Adognravi O.Gajeton J, et al.Cancers (Basel). 2021 Mar 16;13(6):1346. doi: 10.3390/cancers13061346.Cancers (Basel). 2021.PMID:33809756Free PMC article.
- Targeting macrophages in cancer immunotherapy.Duan Z, Luo Y.Duan Z, et al.Signal Transduct Target Ther. 2021 Mar 26;6(1):127. doi: 10.1038/s41392-021-00506-6.Signal Transduct Target Ther. 2021.PMID:33767177Free PMC article.
- Impact of intestinal dysbiosis on breast cancer metastasis and progression.Zhang J, Xie Q, Huo X, Liu Z, Da M, Yuan M, Zhao Y, Shen G.Zhang J, et al.Front Oncol. 2022 Nov 7;12:1037831. doi: 10.3389/fonc.2022.1037831. eCollection 2022.Front Oncol. 2022.PMID:36419880Free PMC article.Review.
- Cancer therapy with major histocompatibility complex-deficient and interferon β-producing myeloid cells derived from allogeneic embryonic stem cells.Umemoto S, Haruta M, Sakisaka M, Ikeda T, Tsukamoto H, Komohara Y, Takeya M, Nishimura Y, Senju S.Umemoto S, et al.Cancer Sci. 2019 Oct;110(10):3027-3037. doi: 10.1111/cas.14144. Epub 2019 Aug 7.Cancer Sci. 2019.PMID:31348591Free PMC article.
References
- Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8, 98 (1989). - PubMed
- Kroemer, G. et al. Natural and therapy-induced immunosurveillance in breast cancer. Nat. Med. 21, 1128–1138 (2015). - PubMed
- Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007). - PubMed
- Denkert, C. et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 28, 105–113 (2010). - PubMed
- Ali, H. R. et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Ann. Oncol. 25, 1536–1543 (2014). - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources