On Matrix-Valued Monge-Kantorovich Optimal Mass Transport
- PMID:26997667
- PMCID: PMC4798256
- DOI: 10.1109/TAC.2014.2350171
On Matrix-Valued Monge-Kantorovich Optimal Mass Transport
Abstract
We present a particular formulation of optimal transport for matrix-valued density functions. Our aim is to devise a geometry which is suitable for comparing power spectral densities of multivariable time series. More specifically, the value of a power spectral density at a given frequency, which in the matricial case encodes power as well as directionality, is thought of as a proxy for a "matrix-valued mass density." Optimal transport aims at establishing a natural metric in the space of such matrix-valued densities which takes into account differences between power across frequencies as well as misalignment of the corresponding principle axes. Thus, our transportation cost includes a cost of transference of power between frequencies together with a cost of rotating the principle directions of matrix densities. The two endpoint matrix-valued densities can be thought of as marginals of a joint matrix-valued density on a tensor product space. This joint density, very much as in the classical Monge-Kantorovich setting, can be thought to specify the transportation plan. Contrary to the classical setting, the optimal transport plan for matrices is no longer supported on a thin zero-measure set.
Keywords: Convex optimization; matrix-valued density functions; optimal mass-transport.
Figures




Similar articles
- Quantum Monge-Kantorovich Problem and Transport Distance between Density Matrices.Friedland S, Eckstein M, Cole S, Życzkowski K.Friedland S, et al.Phys Rev Lett. 2022 Sep 9;129(11):110402. doi: 10.1103/PhysRevLett.129.110402.Phys Rev Lett. 2022.PMID:36154415
- Insights into capacity-constrained optimal transport.Korman J, McCann RJ.Korman J, et al.Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10064-7. doi: 10.1073/pnas.1221333110. Epub 2013 Jun 3.Proc Natl Acad Sci U S A. 2013.PMID:23733929Free PMC article.
- Fine Properties of Geodesics and Geodesic-Convexity for the Hellinger-Kantorovich Distance.Liero M, Mielke A, Savaré G.Liero M, et al.Arch Ration Mech Anal. 2023;247(6):112. doi: 10.1007/s00205-023-01941-1. Epub 2023 Nov 29.Arch Ration Mech Anal. 2023.PMID:38046049Free PMC article.
- Optimal mass transport for shape matching and comparison.Su Z, Wang Y, Shi R, Zeng W, Sun J, Luo F, Gu X.Su Z, et al.IEEE Trans Pattern Anal Mach Intell. 2015 Nov;37(11):2246-59. doi: 10.1109/TPAMI.2015.2408346.IEEE Trans Pattern Anal Mach Intell. 2015.PMID:26440265Free PMC article.
- Multilayer perceptrons to approximate complex valued functions.Arena P, Fortuna L, Re R, Xibilia MG.Arena P, et al.Int J Neural Syst. 1995 Dec;6(4):435-46. doi: 10.1142/s0129065795000299.Int J Neural Syst. 1995.PMID:8963472Review.
Cited by
- A Dual Formula for the Noncommutative Transport Distance.Wirth M.Wirth M.J Stat Phys. 2022;187(2):19. doi: 10.1007/s10955-022-02911-9. Epub 2022 Apr 8.J Stat Phys. 2022.PMID:35509951Free PMC article.
- A TransportationLp Distance for Signal Analysis.Thorpe M, Park S, Kolouri S, Rohde GK, Slepčev D.Thorpe M, et al.J Math Imaging Vis. 2017 Oct;59(2):187-210. doi: 10.1007/s10851-017-0726-4. Epub 2017 Mar 23.J Math Imaging Vis. 2017.PMID:30233108Free PMC article.
- Smooth Interpolation of Covariance Matrices and Brain Network Estimation.Ning L.Ning L.IEEE Trans Automat Contr. 2019 Aug;64(8):3184-3193. doi: 10.1109/tac.2018.2879597. Epub 2018 Nov 5.IEEE Trans Automat Contr. 2019.PMID:33907337Free PMC article.
- Smooth interpolation of covariance matrices and brain network estimation: Part II.Ning L.Ning L.IEEE Trans Automat Contr. 2020 May;65(5):1901-1910. doi: 10.1109/TAC.2019.2926854. Epub 2019 Jul 4.IEEE Trans Automat Contr. 2020.PMID:33935294Free PMC article.
- Matricial Wasserstein-1 Distance.Chen Y, Georgiou TT, Ning L, Tannenbaum A.Chen Y, et al.IEEE Control Syst Lett. 2017 Jul;1(1):14-19. doi: 10.1109/LCSYS.2017.2699319. Epub 2017 Apr 28.IEEE Control Syst Lett. 2017.PMID:29152609Free PMC article.
References
- Monge G. Open Library. De l’Imprimerie Royale; 1781. Mémoire sur la théorie des déblais et des remblais.
- Kantorovich L. On the transfer of masses. Dokl Akad Nauk SSSR. 1942;37:227–229.
- Villani C. Topics in optimal transportation. Vol. 58. Providence, RI: American Mathematical Society; 2003.
- Ambrosio L. Lecture notes on optimal transport problems. Mathematical aspects of evolving interfaces. 2003:1–52.
- Rachev S, Rüschendorf L. Mass Transportation Problems: Theory. Vol. 1. New York: Springer-Verlag; 1998.