Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome
- PMID:26912900
- PMCID: PMC4980823
- DOI: 10.1126/science.aad9421
Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome
Abstract
Hundreds of pathways for degradation converge at ubiquitin recognition by a proteasome. Here, we found that the five known proteasomal ubiquitin receptors in yeast are collectively nonessential for ubiquitin recognition and identified a sixth receptor, Rpn1. A site ( T1: ) in the Rpn1 toroid recognized ubiquitin and ubiquitin-like ( UBL: ) domains of substrate shuttling factors. T1 structures with monoubiquitin or lysine 48 diubiquitin show three neighboring outer helices engaging two ubiquitins. T1 contributes a distinct substrate-binding pathway with preference for lysine 48-linked chains. Proximal to T1 within the Rpn1 toroid is a second UBL-binding site ( T2: ) that assists in ubiquitin chain disassembly, by binding the UBL of deubiquitinating enzyme Ubp6. Thus, a two-site recognition domain intrinsic to the proteasome uses distinct ubiquitin-fold ligands to assemble substrates, shuttling factors, and a deubiquitinating enzyme.
Copyright © 2016, American Association for the Advancement of Science.
Figures








References
- Deveraux Q, Ustrell V, Pickart C, Rechsteiner M. A 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem. 1994;269:7059–7061. - PubMed
- Fu H, et al. Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1. J Biol Chem. 1998;273:1970–1981. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
