Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Free PMC article
Full text links

Actions

Share

.1989 Aug;135(2):245-50.

Impaired glucose tolerance is associated with increased islet amyloid polypeptide (IAPP) immunoreactivity in pancreatic beta cells

Affiliations

Impaired glucose tolerance is associated with increased islet amyloid polypeptide (IAPP) immunoreactivity in pancreatic beta cells

K H Johnson et al. Am J Pathol.1989 Aug.

Abstract

Adult cats determined by clinical laboratory evaluations to be normal, impaired glucose tolerant, or overtly diabetic were used to explore prospectively the relationships among pancreatic beta cell islet amyloid polypeptide (IAPP) immunoreactivity, islet amyloid (IA) deposition, and diabetogenesis. IAPP-derived IA was found in 11 of 14 (79%) diabetic cats, in four of nine (44%) impaired glucose tolerant cats, and in two of eight (25%) normal adult cats. The presence of IA even in very small amounts, therefore, predicts a very high probability (88%) that an animal has either impaired glucose tolerance or overt DM. Although all overtly diabetic cats had a marked decrease or absence of beta cell IAPP immunoreactivity, six of six cats with impaired glucose tolerance retained IAPP immunoreactivity with 1:15,000 dilutions of antisynthetic IAPP 7-17, whereas only one of seven normal cats had IAPP immunoreactivity beyond 1:10,000 dilutions. These findings suggest that increased IAPP production preceding the development of overt DM is linked to the progressive formation of insoluble IA deposits that are apparent in most overtly diabetic individuals. Of most importance, in that IAPP has been reported to inhibit both basal and insulin-stimulated rates of glycogen synthesis, is the possibility that increased production and release of IAPP by pancreatic beta cells plays a key role in the development of the insulin resistance and impaired glucose tolerance, both of which occur in Type 2 DM.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

References

    1. Am J Pathol. 1987 Jun;127(3):414-7 - PubMed
    1. J Histochem Cytochem. 1975 Sep;23(9):666-77 - PubMed
    1. Acta Pathol Microbiol Scand A. 1973 May;81(3):291-300 - PubMed
    1. Am J Pathol. 1961 Jan;38:49-59 - PubMed
    1. Diabetes. 1978 Apr;27(4):357-64 - PubMed

Publication types

MeSH terms

Substances

Related information

Grants and funding

LinkOut - more resources

Full text links
Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp