Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

.2016 Feb:49:252-9.
doi: 10.1016/j.fsi.2015.12.033. Epub 2015 Dec 23.

Salmonella plasmid virulence gene spvB enhances bacterial virulence by inhibiting autophagy in a zebrafish infection model

Affiliations

Salmonella plasmid virulence gene spvB enhances bacterial virulence by inhibiting autophagy in a zebrafish infection model

Yuan-Yuan Li et al. Fish Shellfish Immunol.2016 Feb.

Abstract

Salmonella enterica serovar typhimurium (S. typhimurium) is a facultative intracellular pathogen that can cause gastroenteritis and systemic infection in a wide range of hosts. Salmonella plasmid virulence gene spvB is closely related to bacterial virulence in different cells and animal models, and the encoded protein acts as an intracellular toxin required for ADP-ribosyl transferase activity. However, until now there is no report about the pathogenecity of spvB gene on zebrafish. Due to the outstanding advantages of zebrafish in analyzing bacteria-host interactions, a S. typhimurium infected zebrafish model was set up here to study the effect of spvB on autophagy and intestinal pathogenesis in vivo. We found that spvB gene could decrease the LD50 of S. typhimurium, and the strain carrying spvB promoted bacterial proliferation and aggravated the intestinal damage manifested by the narrowed intestines, fallen microvilli, blurred epithelium cell structure and infiltration of inflammatory cells. Results demonstrated the enhanced virulence induced by spvB in zebrafish. In spvB-mutant strain infected zebrafish, the levels of Lc3 turnover and Beclin1 expression increased, and the double-membraned autophagosome structures were observed, suggesting that spvB can inhibit autophagy activity. In summary, our results indicate that S. typhimurium strain containing spvB displays more virulence, triggering an increase in bacterial survival and intestine injuries by suppressing autophagy for the first time. This model provides novel insights into the role of Salmonella plasmid virulence gene in bacterial pathogenesis, and can help to further elucidate the relationship between bacteria and host immune response.

Keywords: Autophagy; Pathogenesis; Salmonella plasmid virulence gene; Zebrafish.

Copyright © 2015 Elsevier Ltd. All rights reserved.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp