Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Spandidos Publications full text link Spandidos Publications
Full text links

Actions

Review
.2015 Dec;47(6):2005-16.
doi: 10.3892/ijo.2015.3197. Epub 2015 Oct 12.

Cancer-reactive memory T cells from bone marrow: Spontaneous induction and therapeutic potential (Review)

Affiliations
Review

Cancer-reactive memory T cells from bone marrow: Spontaneous induction and therapeutic potential (Review)

Volker Schirrmacher. Int J Oncol.2015 Dec.

Abstract

Cognate interactions between naïve tumor antigen (TA)-specific T cells and TA-presenting dendritic cells (DCs) are facilitated by secondary lymphoid organs such as lymph nodes or the spleen. These can result either in TA-specific tolerance or, depending on environmental costimulatory signals, in TA-specific immune responses. In the present review, we describe such events for the bone marrow (BM) when blood-borne TA, released from the primary tumor or expressed by blood circulating tumor cells or DCs enters the BM stroma and parenchyma. We argue that cognate T-DC interactions in the BM result in immune responses and generation of memory T cells (MTCs) rather than tolerance because T cells in the BM show an increased level of pre-activation. The review starts with the spontaneous induction of cancer-reactive MTCs in the BM and the involvement of such MTCs in the control of tumor dormancy. The main part deals with the therapeutic potency of BM MTCs. This is a new area of research in which the authors research group has performed pioneering studies which are summarized. These include studies in animal tumor models, studies with human cells in tumor xenotransplant models and clinical studies. Based on observations of an enormous expansion capacity, longevity and therapeutic capacity of BM MTCs, a hypothesis is presented which suggests the involvement of stem-like MTCs.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Spandidos Publications full text link Spandidos Publications
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp