Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

BioMed Central full text link BioMed Central Free PMC article
Full text links

Actions

Share

.2015 Aug 27:2:14.
doi: 10.1186/s40575-015-0026-5. eCollection 2015.

The effect of genetic bottlenecks and inbreeding on the incidence of two major autoimmune diseases in standard poodles, sebaceous adenitis and Addison's disease

Affiliations

The effect of genetic bottlenecks and inbreeding on the incidence of two major autoimmune diseases in standard poodles, sebaceous adenitis and Addison's disease

Niels C Pedersen et al. Canine Genet Epidemiol..

Abstract

Background: Sebaceous adenitis (SA) and Addison's disease (AD) increased rapidly in incidence among Standard Poodles after the mid-twentieth century. Previous attempts to identify specific genetic causes using genome wide association studies and interrogation of the dog leukocyte antigen (DLA) region have been non-productive. However, such studies led us to hypothesize that positive selection for desired phenotypic traits that arose in the mid-twentieth century led to intense inbreeding and the inadvertent amplification of AD and SA associated traits.

Results: This hypothesis was tested with genetic studies of 761 Standard, Miniature, and Miniature/Standard Poodle crosses from the USA, Canada and Europe, coupled with extensive pedigree analysis of thousands more dogs. Genome-wide diversity across the world-wide population was measured using a panel of 33 short tandem repeat (STR) loci. Allele frequency data were also used to determine the internal relatedness of individual dogs within the population as a whole. Assays based on linkage between STR genomic loci and DLA genes were used to identify class I and II haplotypes and disease associations. Genetic diversity statistics based on genomic STR markers indicated that Standard Poodles from North America and Europe were closely related and reasonably diverse across the breed. However, genetic diversity statistics, internal relatedness, principal coordinate analysis, and DLA haplotype frequencies showed a marked imbalance with 30 % of the diversity in 70 % of the dogs. Standard Poodles with SA and AD were strongly linked to this inbred population, with dogs suffering with SA being the most inbred. No single strong association was found between STR defined DLA class I or II haplotypes and SA or AD in the breed as a whole, although certain haplotypes present in a minority of the population appeared to confer moderate degrees of risk or protection against either or both diseases. Dogs possessing minor DLA class I haplotypes were half as likely to develop SA or AD as dogs with common haplotypes. Miniature/Standard Poodle crosses being used for outcrossing were more genetically diverse than Standard Poodles and genetically distinguishable across the genome and in the DLA class I and II region.

Conclusions: Ancestral genetic polymorphisms responsible for SA and AD entered Standard Poodles through separate lineages, AD earlier and SA later, and were increasingly fixed by a period of close linebreeding that was related to popular bloodlines from the mid-twentieth century. This event has become known as the midcentury bottleneck or MCB. Sustained positive selection resulted in a marked imbalance in genetic diversity across the genome and in the DLA class I and II region. Both SA and AD were concentrated among the most inbred dogs, with genetic outliers being relatively disease free. No specific genetic markers other than those reflecting the degree of inbreeding were consistently associated with either disease. Standard Poodles as a whole remain genetically diverse, but steps should be taken to rebalance diversity using genetic outliers and if necessary, outcrosses to phenotypically similar but genetically distinct breeds.

Keywords: Addison’s disease; Genetic bottleneck; Inbreeding; Sebaceous adenitis; Standard poodles.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Distribution of IR estimates in 664 Standard Poodles based on intra-breed diversity (solid line), compared with IR adjusted for diversity lost during breed evolution (dashed line). The loss of diversity was determined by comparing allele frequencies at the same loci between Standard Poodles and randomly breeding village dogs from the Middle East, SE Asia, and islands and nations of the Pacific [16]
Fig. 2
Fig. 2
Comparison of % Observed Heterozygosity (a) and IR (b) based on 33 STRs among Addison (n = 74), SA (n = 61) and Control (n = 314) Standard Poodles from USA. Data were analyzed with one-way ANOVA
Fig. 3
Fig. 3
PCoA plot based on 33 genomic STRS of 761 poodles. The poodles were from various regions of the world and included mainly purebred Standard Poodles, with a smaller number of Miniature Poodles (n = 16) and Standard Poodle/Miniature Poodle crosses (n = 72). The bulk of purebred Standard Poodles from Europe, Canada and the USA were clustered together with some genetic outliers from all regions. Miniature Poodles were clearly distinct from the general population of Standard Poodles. Standard Poodles that had been outcrossed in the past to Miniature Poodles formed an outlier population
Fig. 4
Fig. 4
PCoA plot of Standard Poodles showing the genetic relationships between healthy dogs (n = 314) and dogs suffering from either SA (n = 61) or AD (n = 74). Diseased case and healthy control dogs were only from the USA
Fig. 5
Fig. 5
A comparison of the relationship coefficient ( % ancestry) of Berkham Hansel of Rettats in an individual pedigree and the ratio of AD (n = 512) to healthy Standard Poodles (n = 1643). Berkham Hansel was born in 1937 and was the ninth most influential ancestor for dogs suffering from AD
Fig. 6
Fig. 6
A comparison of the relationship coefficient ( % ancestry) of Mogene’s Beauzeaux in an individual pedigree and the ratio of SA (n = 465) to healthy Standard Poodles (n = 1643). Mogene’s Beauzeaux was born in 1962 and is the sixth most influential ancestor for dogs suffering from SA
Fig. 7
Fig. 7
A comparison of the relationship coefficient ( % ancestry) of Haus Sachse’s Rebecca in an individual pedigree and the ratio of SA (n = 465) to healthy Standard Poodles (n = 1643). Haus Sachse’s Rebecca was born in 1964 in a bloodline separate from Mogene’s Beauzeaux and is the tenth most influential ancestor for dogs suffering from SA
See this image and copyright information in PMC

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

References

    1. Pedersen NC. A review of immunologic diseases of the dog. Vet Immunol Immunopathol. 1999;69(2–4):251–3422. doi: 10.1016/S0165-2427(99)00059-8. - DOI - PMC - PubMed
    1. Selmi C, Lu Q, Humble MC. Heritability versus the role of the environment in autoimmunity. J Autoimmun. 2012;39(4):249–52. doi: 10.1016/j.jaut.2012.07.011. - DOI - PubMed
    1. Greer KA, Schatzberg SJ, Porter BF, Jones KA, Famula TR, Murphy KE. Heritability and transmissionanalysis of necrotizing meningoencephalitis in the Pug. Res Vet Sci. 2009;86(3):438–42. doi: 10.1016/j.rvsc.2008.10.002. - DOI - PubMed
    1. Famula TR, Belanger JM, Oberbauer AM. Heritability and complex segregation analysis of hypoadrenocorticism in the standard poodle. J Small Anim Pract. 2003;44(1):8–12. doi: 10.1111/j.1748-5827.2003.tb00096.x. - DOI - PubMed
    1. Oberbauer AM, Benemann KS, Belanger JM, Wagner DR, Ward JH, Famula TR. Inheritance of hypoadrenocorticism in bearded collies. Am J Vet Res. 2002;63(5):643–7. doi: 10.2460/ajvr.2002.63.643. - DOI - PubMed

Related information

LinkOut - more resources

Full text links
BioMed Central full text link BioMed Central Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp