Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold
- PMID:26300850
- PMCID: PMC4523942
- DOI: 10.3389/fmicb.2015.00755
Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold
Abstract
For the past 25 years, phage display technology has been an invaluable tool for studies of protein-protein interactions. However, the inherent biological, biochemical, and biophysical properties of filamentous bacteriophage, as well as the ease of its genetic manipulation, also make it an attractive platform outside the traditional phage display canon. This review will focus on the unique properties of the filamentous bacteriophage and highlight its diverse applications in current research. Particular emphases are placed on: (i) the advantages of the phage as a vaccine carrier, including its high immunogenicity, relative antigenic simplicity and ability to activate a range of immune responses, (ii) the phage's potential as a prophylactic and therapeutic agent for infectious and chronic diseases, (iii) the regularity of the virion major coat protein lattice, which enables a variety of bioconjugation and surface chemistry applications, particularly in nanomaterials, and (iv) the phage's large population sizes and fast generation times, which make it an excellent model system for directed protein evolution. Despite their ubiquity in the biosphere, metagenomics work is just beginning to explore the ecology of filamentous and non-filamentous phage, and their role in the evolution of bacterial populations. Thus, the filamentous phage represents a robust, inexpensive, and versatile microorganism whose bioengineering applications continue to expand in new directions, although its limitations in some spheres impose obstacles to its widespread adoption and use.
Keywords: antimicrobial; bioconjugation; filamentous phage; therapeutic; vaccine.
Figures



Similar articles
- Chemical strategies for the covalent modification of filamentous phage.Bernard JM, Francis MB.Bernard JM, et al.Front Microbiol. 2014 Dec 23;5:734. doi: 10.3389/fmicb.2014.00734. eCollection 2014.Front Microbiol. 2014.PMID:25566240Free PMC article.Review.
- Immunocontraception: Filamentous Bacteriophage as a Platform for Vaccine Development.Samoylova TI, Braden TD, Spencer JA, Bartol FF.Samoylova TI, et al.Curr Med Chem. 2017 Nov 20;24(35):3907-3920. doi: 10.2174/0929867324666170911160426.Curr Med Chem. 2017.PMID:28901276Free PMC article.Review.
- Developing strategies to enhance and focus humoral immune responses using filamentous phage as a model antigen.Henry KA, Murira A, van Houten NE, Scott JK.Henry KA, et al.Bioeng Bugs. 2011 Sep-Oct;2(5):275-83. doi: 10.4161/bbug.2.5.16559. Epub 2011 Sep 1.Bioeng Bugs. 2011.PMID:22008640Free PMC article.
- Filamentous Phage: Structure and Biology.Rakonjac J, Russel M, Khanum S, Brooke SJ, Rajič M.Rakonjac J, et al.Adv Exp Med Biol. 2017;1053:1-20. doi: 10.1007/978-3-319-72077-7_1.Adv Exp Med Biol. 2017.PMID:29549632Review.
- Arming Filamentous Bacteriophage, a Nature-Made Nanoparticle, for New Vaccine and Immunotherapeutic Strategies.Sartorius R, D'Apice L, Prisco A, De Berardinis P.Sartorius R, et al.Pharmaceutics. 2019 Sep 1;11(9):437. doi: 10.3390/pharmaceutics11090437.Pharmaceutics. 2019.PMID:31480551Free PMC article.Review.
Cited by
- Bacteriophages as Biotechnological Tools.Elois MA, Silva RD, Pilati GVT, Rodríguez-Lázaro D, Fongaro G.Elois MA, et al.Viruses. 2023 Jan 26;15(2):349. doi: 10.3390/v15020349.Viruses. 2023.PMID:36851563Free PMC article.Review.
- The development of inovirus-associated vector vaccines using phage-display technologies.Stern Z, Stylianou DC, Kostrikis LG.Stern Z, et al.Expert Rev Vaccines. 2019 Sep;18(9):913-920. doi: 10.1080/14760584.2019.1651649. Epub 2019 Sep 8.Expert Rev Vaccines. 2019.PMID:31373843Free PMC article.Review.
- EGFR-Targeted Photodynamic Therapy.Ulfo L, Costantini PE, Di Giosia M, Danielli A, Calvaresi M.Ulfo L, et al.Pharmaceutics. 2022 Jan 20;14(2):241. doi: 10.3390/pharmaceutics14020241.Pharmaceutics. 2022.PMID:35213974Free PMC article.Review.
- The Toolbox for Modified Aptamers.Lapa SA, Chudinov AV, Timofeev EN.Lapa SA, et al.Mol Biotechnol. 2016 Feb;58(2):79-92. doi: 10.1007/s12033-015-9907-9.Mol Biotechnol. 2016.PMID:26607475Review.
- Bacteriophages and Their Immunological Applications against Infectious Threats.Criscuolo E, Spadini S, Lamanna J, Ferro M, Burioni R.Criscuolo E, et al.J Immunol Res. 2017;2017:3780697. doi: 10.1155/2017/3780697. Epub 2017 Apr 16.J Immunol Res. 2017.PMID:28484722Free PMC article.Review.
References
- Abbineni G., Modali S., Safiejko-Mroczka B., Petrenko V. A., Mao C. (2010). Evolutionary selection of new breast cancer cell-targeting peptides and phages with the cell-targeting peptides fully displayed on the major coat and their effects on actin dynamics during cell internalization. Mol. Pharm. 7 1629–1642. 10.1021/mp100052y - DOI - PMC - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous