DNA rendering of polyhedral meshes at the nanoscale
- PMID:26201596
- DOI: 10.1038/nature14586
DNA rendering of polyhedral meshes at the nanoscale
Abstract
It was suggested more than thirty years ago that Watson-Crick base pairing might be used for the rational design of nanometre-scale structures from nucleic acids. Since then, and especially since the introduction of the origami technique, DNA nanotechnology has enabled increasingly more complex structures. But although general approaches for creating DNA origami polygonal meshes and design software are available, there are still important constraints arising from DNA geometry and sense/antisense pairing, necessitating some manual adjustment during the design process. Here we present a general method of folding arbitrary polygonal digital meshes in DNA that readily produces structures that would be very difficult to realize using previous approaches. The design process is highly automated, using a routeing algorithm based on graph theory and a relaxation simulation that traces scaffold strands through the target structures. Moreover, unlike conventional origami designs built from close-packed helices, our structures have a more open conformation with one helix per edge and are therefore stable under the ionic conditions usually used in biological assays.
Comment in
- Nanotechnology: Pathfinder for DNA constructs.Liedl T.Liedl T.Nature. 2015 Jul 23;523(7561):412-3. doi: 10.1038/523412a.Nature. 2015.PMID:26201592No abstract available.
Similar articles
- Gigadalton-scale shape-programmable DNA assemblies.Wagenbauer KF, Sigl C, Dietz H.Wagenbauer KF, et al.Nature. 2017 Dec 6;552(7683):78-83. doi: 10.1038/nature24651.Nature. 2017.PMID:29219966
- Designer nanoscale DNA assemblies programmed from the top down.Veneziano R, Ratanalert S, Zhang K, Zhang F, Yan H, Chiu W, Bathe M.Veneziano R, et al.Science. 2016 Jun 24;352(6293):1534. doi: 10.1126/science.aaf4388. Epub 2016 May 26.Science. 2016.PMID:27229143Free PMC article.
- Computer-Aided Production of Scaffolded DNA Nanostructures from Flat Sheet Meshes.Benson E, Mohammed A, Bosco A, Teixeira AI, Orponen P, Högberg B.Benson E, et al.Angew Chem Int Ed Engl. 2016 Jul 25;55(31):8869-72. doi: 10.1002/anie.201602446. Epub 2016 Jun 15.Angew Chem Int Ed Engl. 2016.PMID:27304204Free PMC article.
- Recent progress in DNA origami technology.Endo M, Sugiyama H.Endo M, et al.Curr Protoc Nucleic Acid Chem. 2011 Jun;Chapter 12:Unit12.8. doi: 10.1002/0471142700.nc1208s45.Curr Protoc Nucleic Acid Chem. 2011.PMID:21638269Review.
- Dynamic DNA nanotechnology using strand-displacement reactions.Zhang DY, Seelig G.Zhang DY, et al.Nat Chem. 2011 Feb;3(2):103-13. doi: 10.1038/nchem.957.Nat Chem. 2011.PMID:21258382Review.
Cited by
- Nanotechnology: Pathfinder for DNA constructs.Liedl T.Liedl T.Nature. 2015 Jul 23;523(7561):412-3. doi: 10.1038/523412a.Nature. 2015.PMID:26201592No abstract available.
- Hybrid Nanoassemblies from Viruses and DNA Nanostructures.Ojasalo S, Piskunen P, Shen B, Kostiainen MA, Linko V.Ojasalo S, et al.Nanomaterials (Basel). 2021 May 27;11(6):1413. doi: 10.3390/nano11061413.Nanomaterials (Basel). 2021.PMID:34071795Free PMC article.Review.
- DNA-nanostructure-templated assembly of planar and curved lipid-bilayer membranes.Elbahnasawy MA, Nasr ML.Elbahnasawy MA, et al.Front Chem. 2023 Feb 8;10:1047874. doi: 10.3389/fchem.2022.1047874. eCollection 2022.Front Chem. 2023.PMID:36844038Free PMC article.Review.
- Nanometrology and super-resolution imaging with DNA.Graugnard E, Hughes WL, Jungmann R, Kostiainen MA, Linko V.Graugnard E, et al.MRS Bull. 2017 Dec;42(12):951-959. doi: 10.1557/mrs.2017.274. Epub 2017 Dec 8.MRS Bull. 2017.PMID:31485100Free PMC article.
- Biotechnological mass production of DNA origami.Praetorius F, Kick B, Behler KL, Honemann MN, Weuster-Botz D, Dietz H.Praetorius F, et al.Nature. 2017 Dec 6;552(7683):84-87. doi: 10.1038/nature24650.Nature. 2017.PMID:29219963
References
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources