Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

BioMed Central full text link BioMed Central Free PMC article
Full text links

Actions

Share

.2015 Jun 24:10:85.
doi: 10.1186/s13023-015-0300-3.

Next-generation sequencing applied to a large French cone and cone-rod dystrophy cohort: mutation spectrum and new genotype-phenotype correlation

Affiliations

Next-generation sequencing applied to a large French cone and cone-rod dystrophy cohort: mutation spectrum and new genotype-phenotype correlation

Elise Boulanger-Scemama et al. Orphanet J Rare Dis..

Abstract

Background: Cone and cone-rod dystrophies are clinically and genetically heterogeneous inherited retinal disorders with predominant cone impairment. They should be distinguished from the more common group of rod-cone dystrophies (retinitis pigmentosa) due to their more severe visual prognosis with early central vision loss. The purpose of our study was to document mutation spectrum of a large French cohort of cone and cone-rod dystrophies.

Methods: We applied Next-Generation Sequencing targeting a panel of 123 genes implicated in retinal diseases to 96 patients. A systematic filtering approach was used to identify likely disease causing variants, subsequently confirmed by Sanger sequencing and co-segregation analysis when possible.

Results: Overall, the likely causative mutations were detected in 62.1 % of cases, revealing 33 known and 35 novel mutations. This rate was higher for autosomal dominant (100 %) than autosomal recessive cases (53.8 %). Mutations in ABCA4 and GUCY2D were responsible for 19.2 % and 29.4 % of resolved cases with recessive and dominant inheritance, respectively. Furthermore, unexpected genotype-phenotype correlations were identified, confirming the complexity of inherited retinal disorders with phenotypic overlap between cone-rod dystrophies and other retinal diseases.

Conclusions: In summary, this time-efficient approach allowed mutation detection in the most important cohort of cone-rod dystrophies investigated so far covering the largest number of genes. Association of known gene defects with novel phenotypes and mode of inheritance were established.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Percentage of regions with 25-fold coverage per base for each of the 21 known CCRD genes of the panel. The mean and median coverage per gene were 244-fold and 248-fold per base, respectively, with a minimal coverage of 171-fold forRAX2
Fig. 2
Fig. 2
Gene defect spectrum involved in cone and cone-rod dystrophies. Gene defect prevalence in resolved patients with autosomal recessive inheritance (N = 42 patients including 20 sporadic cases) and autosomal dominant inheritance (N = 17 patients including 5 sporadic cases). *EYS disease association with CCRD should be taken with caution. ** the implication ofROM1 in IRD remains to be elucidated in the future. *** after clinical reassessment, patient’s phenotype was retrospectively more compatible with ADVIRC diagnosis and not CCRD
Fig. 3
Fig. 3
Phenotype of CIC01571 who carries a homozygous nonsense mutation inC2Orf71, previously reported in RP. (a) Pedigree of family 1932. History of symptoms reveals initial photophobia and bilateral central vision loss. Visual acuity is reduced to hand motion in both eyes. Colour fundus photographs (b), infra-red (c) and blue autofluorescence imaging (d) confirm the predominant central involvement with severe bilateral macular atrophy. SD-OCT (e) shows the disappearance of the photoreceptor layers that extends beyond the vascular arcades. ERG responses (not shown) were undetectable from background noise in both scotopic and photopic conditions
Fig. 4
Fig. 4
Phenotype of CIC03953 who carries a compound heterozygous mutation inEYS. (a) Pedigree of family 1819. Visual acuity is 20/50 with −2.50 (−0.25)25° in the right eye and 20/80 with −2.50 (−0.75)170° in the left eye. Kinetic perimetry shows a bilateral central scotoma. Color fundus photographs (b) show bilateral optic disc pallor, retinal vessels narrowing and macular pigmentary deposits. Infra-red (c), infra-red autofluorescence (d) and blue autofluorescence imaging (e) highlight macular pigmentary and atrophic changes. SD-OCT (f) reveals a predominant central involvement with a disruption of the outer retinal layers limited in the fovea. ERG (g) revealed unusual features in association forEYS mutations: under scotopic conditions, there was no detectable b-wave in response to a dim (0.01 cd.s.m−2) flash while responses to a bright flash showed some reduction of the a-wave but additional b-wave reduction leading to an electronegative waveform. Photopic responses were severely affected in keeping with cone-rod dysfunction with additional inner retinal dysfunction
See this image and copyright information in PMC

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

References

    1. Hamel CP. Cone rod dystrophies. Orphanet J Rare Dis. 2007;2:7. doi: 10.1186/1750-1172-2-7. - DOI - PMC - PubMed
    1. Thiadens AAHJ, Phan TML, Zekveld-Vroon RC, Leroy BP, van den Born LI, Hoyng CB, et al. Clinical course, genetic etiology, and visual outcome in cone and cone-rod dystrophy. Ophthalmology. 2012;119:819–826. doi: 10.1016/j.ophtha.2011.10.011. - DOI - PubMed
    1. Michaelides M, Hardcastle AJ, Hunt DM, Moore AT. Progressive cone and cone-rod dystrophies: phenotypes and underlying molecular genetic basis. Surv Ophthalmol. 2006;51:232–58. doi: 10.1016/j.survophthal.2006.02.007. - DOI - PubMed
    1. Audo I, Mohand-Saïd S, Dhaenens C-M, Germain A, Orhan E, Antonio A, et al. RP1 and autosomal dominant rod-cone dystrophy: novel mutations, a review of published variants, and genotype-phenotype correlation. Hum Mutat. 2012;33:73–80. doi: 10.1002/humu.21640. - DOI - PubMed
    1. Jalili IK, Smith NJ. A progressive cone-rod dystrophy and amelogenesis imperfecta: a new syndrome. J Med Genet. 1988;25:738–40. doi: 10.1136/jmg.25.11.738. - DOI - PMC - PubMed

Publication types

MeSH terms

Related information

LinkOut - more resources

Full text links
BioMed Central full text link BioMed Central Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp