A Structural Overview of RNA-Dependent RNA Polymerases from the Flaviviridae Family
- PMID:26062131
- PMCID: PMC4490480
- DOI: 10.3390/ijms160612943
A Structural Overview of RNA-Dependent RNA Polymerases from the Flaviviridae Family
Abstract
RNA-dependent RNA polymerases (RdRPs) from the Flaviviridae family are representatives of viral polymerases that carry out RNA synthesis through a de novo initiation mechanism. They share a ≈ 600-residue polymerase core that displays a canonical viral RdRP architecture resembling an encircled right hand with palm, fingers, and thumb domains surrounding the active site. Polymerase catalytic motifs A-E in the palm and motifs F/G in the fingers are shared by all viral RdRPs with sequence and/or structural conservations regardless of the mechanism of initiation. Different from RdRPs carrying out primer-dependent initiation, Flaviviridae and other de novo RdRPs utilize a priming element often integrated in the thumb domain to facilitate primer-independent initiation. Upon the transition to the elongation phase, this priming element needs to undergo currently unresolved conformational rearrangements to accommodate the growth of the template-product RNA duplex. In the genera of Flavivirus and Pestivirus, the polymerase module in the C-terminal part of the RdRP protein may be regulated in cis by the N-terminal region of the same polypeptide. Either being a methyltransferase in Flavivirus or a functionally unclarified module in Pestivirus, this region could play auxiliary roles for the canonical folding and/or the catalysis of the polymerase, through defined intra-molecular interactions.
Keywords: Flaviviridae; RNA-dependent RNA polymerase; catalytic motif; de novo initiation; elongation; in cis regulation.
Figures




Similar articles
- RNA-dependent RNA polymerases from Flaviviridae.Choi KH, Rossmann MG.Choi KH, et al.Curr Opin Struct Biol. 2009 Dec;19(6):746-51. doi: 10.1016/j.sbi.2009.10.015. Epub 2009 Nov 14.Curr Opin Struct Biol. 2009.PMID:19914821Review.
- Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases.Selisko B, Dutartre H, Guillemot JC, Debarnot C, Benarroch D, Khromykh A, Desprès P, Egloff MP, Canard B.Selisko B, et al.Virology. 2006 Jul 20;351(1):145-58. doi: 10.1016/j.virol.2006.03.026. Epub 2006 Apr 21.Virology. 2006.PMID:16631221
- A structural view of the RNA-dependent RNA polymerases from the Flavivirus genus.Lu G, Gong P.Lu G, et al.Virus Res. 2017 Apr 15;234:34-43. doi: 10.1016/j.virusres.2017.01.020. Epub 2017 Jan 25.Virus Res. 2017.PMID:28131854Review.
- An induced-fit de novo initiation mechanism suggested by a pestivirus RNA-dependent RNA polymerase.Zhang BY, Liu W, Jia H, Lu G, Gong P.Zhang BY, et al.Nucleic Acids Res. 2021 Sep 7;49(15):8811-8821. doi: 10.1093/nar/gkab666.Nucleic Acids Res. 2021.PMID:34365500Free PMC article.
- The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage.Gorbalenya AE, Pringle FM, Zeddam JL, Luke BT, Cameron CE, Kalmakoff J, Hanzlik TN, Gordon KH, Ward VK.Gorbalenya AE, et al.J Mol Biol. 2002 Nov 15;324(1):47-62. doi: 10.1016/s0022-2836(02)01033-1.J Mol Biol. 2002.PMID:12421558Free PMC article.
Cited by
- Non-Nucleoside Lycorine-Based Analogs as Potential DENV/ZIKV NS5 Dual Inhibitors: Structure-Based Virtual Screening and Chemoinformatic Analysis.Rodríguez-Ararat AC, Hayek-Orduz Y, Vásquez AF, Sierra-Hurtado F, Villegas-Torres MF, Caicedo-Burbano PA, Achenie LEK, Barrios AFG.Rodríguez-Ararat AC, et al.Metabolites. 2024 Sep 26;14(10):519. doi: 10.3390/metabo14100519.Metabolites. 2024.PMID:39452899Free PMC article.
- From Oxetane to Thietane: Extending the Antiviral Spectrum of 2'-Spirocyclic Uridines by Substituting Oxygen with Sulfur.Grosse S, Tahri A, Raboisson P, Houpis Y, Stoops B, Jacoby E, Neefs JM, Van Loock M, Goethals O, Geluykens P, Bonfanti JF, Jonckers THM.Grosse S, et al.ACS Med Chem Lett. 2022 Nov 28;13(12):1879-1884. doi: 10.1021/acsmedchemlett.2c00372. eCollection 2022 Dec 8.ACS Med Chem Lett. 2022.PMID:36518706Free PMC article.
- System-oriented optimization of multi-target 2,6-diaminopurine derivatives: Easily accessible broad-spectrum antivirals active against flaviviruses, influenza virus and SARS-CoV-2.Vicenti I, Martina MG, Boccuto A, De Angelis M, Giavarini G, Dragoni F, Marchi S, Trombetta CM, Crespan E, Maga G, Eydoux C, Decroly E, Montomoli E, Nencioni L, Zazzi M, Radi M.Vicenti I, et al.Eur J Med Chem. 2021 Nov 15;224:113683. doi: 10.1016/j.ejmech.2021.113683. Epub 2021 Jul 5.Eur J Med Chem. 2021.PMID:34273661Free PMC article.
- SARS-CoV-2: Possible recombination and emergence of potentially more virulent strains.Haddad D, John SE, Mohammad A, Hammad MM, Hebbar P, Channanath A, Nizam R, Al-Qabandi S, Al Madhoun A, Alshukry A, Ali H, Thanaraj TA, Al-Mulla F.Haddad D, et al.PLoS One. 2021 May 25;16(5):e0251368. doi: 10.1371/journal.pone.0251368. eCollection 2021.PLoS One. 2021.PMID:34033650Free PMC article.
- Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach.Aftab SO, Ghouri MZ, Masood MU, Haider Z, Khan Z, Ahmad A, Munawar N.Aftab SO, et al.J Transl Med. 2020 Jul 7;18(1):275. doi: 10.1186/s12967-020-02439-0.J Transl Med. 2020.PMID:32635935Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials