Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations
- PMID:25985179
- PMCID: PMC4510984
- DOI: 10.1038/nature14405
Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations
Abstract
Phosphofructokinase-1 (PFK1), the 'gatekeeper' of glycolysis, catalyses the committed step of the glycolytic pathway by converting fructose-6-phosphate to fructose-1,6-bisphosphate. Allosteric activation and inhibition of PFK1 by over ten metabolites and in response to hormonal signalling fine-tune glycolytic flux to meet energy requirements. Mutations inhibiting PFK1 activity cause glycogen storage disease type VII, also known as Tarui disease, and mice deficient in muscle PFK1 have decreased fat stores. Additionally, PFK1 is proposed to have important roles in metabolic reprogramming in cancer. Despite its critical role in glucose flux, the biologically relevant crystal structure of the mammalian PFK1 tetramer has not been determined. Here we report the first structures of the mammalian PFK1 tetramer, for the human platelet isoform (PFKP), in complex with ATP-Mg(2+) and ADP at 3.1 and 3.4 Å, respectively. The structures reveal substantial conformational changes in the enzyme upon nucleotide hydrolysis as well as a unique tetramer interface. Mutations of residues in this interface can affect tetramer formation, enzyme catalysis and regulation, indicating the functional importance of the tetramer. With altered glycolytic flux being a hallmark of cancers, these new structures allow a molecular understanding of the functional consequences of somatic PFK1 mutations identified in human cancers. We characterize three of these mutations and show they have distinct effects on allosteric regulation of PFKP activity and lactate production. The PFKP structural blueprint for somatic mutations as well as the catalytic site can guide therapeutic targeting of PFK1 activity to control dysregulated glycolysis in disease.
Conflict of interest statement
The authors declare no competing financial interests.
Figures











Similar articles
- The glycolytic enzyme phosphofructokinase-1 assembles into filaments.Webb BA, Dosey AM, Wittmann T, Kollman JM, Barber DL.Webb BA, et al.J Cell Biol. 2017 Aug 7;216(8):2305-2313. doi: 10.1083/jcb.201701084. Epub 2017 Jun 23.J Cell Biol. 2017.PMID:28646105Free PMC article.
- Crystal structure of human platelet phosphofructokinase-1 locked in an activated conformation.Kloos M, Brüser A, Kirchberger J, Schöneberg T, Sträter N.Kloos M, et al.Biochem J. 2015 Aug 1;469(3):421-32. doi: 10.1042/BJ20150251. Epub 2015 Jun 11.Biochem J. 2015.PMID:26205495
- Structures of S. pombe phosphofructokinase in the F6P-bound and ATP-bound states.Benjamin S, Radermacher M, Bär J, Edelmann A, Ruiz T.Benjamin S, et al.J Struct Biol. 2007 Sep;159(3):498-506. doi: 10.1016/j.jsb.2007.06.001. Epub 2007 Jun 15.J Struct Biol. 2007.PMID:17643314Free PMC article.
- Structure and allosteric regulation of eukaryotic 6-phosphofructokinases.Schöneberg T, Kloos M, Brüser A, Kirchberger J, Sträter N.Schöneberg T, et al.Biol Chem. 2013 Aug;394(8):977-93. doi: 10.1515/hsz-2013-0130.Biol Chem. 2013.PMID:23729568Review.
- Control of glycolysis through regulation of PFK1: old friends and recent additions.Mor I, Cheung EC, Vousden KH.Mor I, et al.Cold Spring Harb Symp Quant Biol. 2011;76:211-6. doi: 10.1101/sqb.2011.76.010868. Epub 2011 Nov 17.Cold Spring Harb Symp Quant Biol. 2011.PMID:22096029Review.
Cited by
- Tumor metabolism regulating chemosensitivity in ovarian cancer.Han CY, Patten DA, Richardson RB, Harper ME, Tsang BK.Han CY, et al.Genes Cancer. 2018 May;9(5-6):155-175. doi: 10.18632/genesandcancer.176.Genes Cancer. 2018.PMID:30603053Free PMC article.Review.
- Liver Transcriptome Analysis Reveals Energy Regulation and Functional Impairment of Onychostoma sima During Starvation.Chen C, Zhou B, Lin J, Gong Q, Xu F, Li Z, Huang Y.Chen C, et al.Mar Biotechnol (NY). 2023 Apr;25(2):247-258. doi: 10.1007/s10126-023-10201-y. Epub 2023 Feb 15.Mar Biotechnol (NY). 2023.PMID:36790593
- How protons pave the way to aggressive cancers.Swietach P, Boedtkjer E, Pedersen SF.Swietach P, et al.Nat Rev Cancer. 2023 Dec;23(12):825-841. doi: 10.1038/s41568-023-00628-9. Epub 2023 Oct 26.Nat Rev Cancer. 2023.PMID:37884609Review.
- Targeting FBPase is an emerging novel approach for cancer therapy.Liu GM, Zhang YM.Liu GM, et al.Cancer Cell Int. 2018 Mar 9;18:36. doi: 10.1186/s12935-018-0533-z. eCollection 2018.Cancer Cell Int. 2018.PMID:29556139Free PMC article.Review.
- Metabolism-regulating non-coding RNAs in breast cancer: roles, mechanisms and clinical applications.Xu S, Wang L, Zhao Y, Mo T, Wang B, Lin J, Yang H.Xu S, et al.J Biomed Sci. 2024 Feb 26;31(1):25. doi: 10.1186/s12929-024-01013-w.J Biomed Sci. 2024.PMID:38408962Free PMC article.Review.
References
- Schöneberg T, Kloos M, Brüser A, Kirchberger J, Sträter N. Structure and allosteric regulation of eukaryotic 6-phosphofructokinases. Biol Chem. 2013;394:977–993. - PubMed
- Tarui S, et al. Phosphofructokinase deficiency in skeletal muscle. A new type of glycogenosis. Biochem Biophys Res Commun. 1965;19:517–523. - PubMed
- Moreno-Sánchez R, et al. Phosphofructokinase type 1 kinetics, isoform expression and gene polymorphisms in cancer cells. J Cell Biochem. 2012;113:1692–1703. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous