Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Atypon full text link Atypon
Full text links

Actions

.2016;74(1):67-72.
doi: 10.3109/00016357.2015.1042039. Epub 2015 May 8.

The effect of cycling deflection on the injection-molded thermoplastic denture base resins

Affiliations

The effect of cycling deflection on the injection-molded thermoplastic denture base resins

Ippei Hamanaka et al. Acta Odontol Scand.2016.

Abstract

Objective: The aim of this study was to evaluate the effect of cycling deflection on the flexural behavior of injection-molded thermoplastic resins.

Materials and methods: Six injection-molded thermoplastic resins (two polyamides, two polyesters, one polycarbonate, one polymethyl methacrylate) and, as a control, a conventional heat-polymerized denture based polymer of polymethyl methacrylate (PMMA) were used in this study. The cyclic constant magnitude (1.0 mm) of 5000 cycles was applied using a universal testing machine to demonstrate plasticization of the polymer. Loading was carried out in water at 23ºC with eight specimens per group (n = 8). Cycling load (N) and deformation (mm) were measured.

Results: Force required to deflect the specimens during the first loading cycle and final loading cycle was statistically significantly different (p < 0.05) with one polyamide based polymer (Valplast) and PMMA based polymers (Acrytone and Acron). The other polyamide based polymer (LucitoneFRS), polyester based polymers (EstheShot and EstheShotBright) and polycarbonate based polymer (ReigningN) did not show significant differences (p > 0.05). None of the materials fractured during the loading test. One polyamide based polymer (Valplast) displayed the highest deformation and PMMA based polymers (Acrytone and Acron) exhibited the second highest deformation among the denture base materials.

Conclusion: It can be concluded that there were considerable differences in the flexural behavior of denture base polymers. This may contribute to the fatigue resistance of the materials.

Keywords: Denture base resin; PMMA; polyamide; polycarbonate; polyester.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources

Full text links
Atypon full text link Atypon
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp