Characteristics of de novo structural changes in the human genome
- PMID:25883321
- PMCID: PMC4448676
- DOI: 10.1101/gr.185041.114
Characteristics of de novo structural changes in the human genome
Abstract
Small insertions and deletions (indels) and large structural variations (SVs) are major contributors to human genetic diversity and disease. However, mutation rates and characteristics of de novo indels and SVs in the general population have remained largely unexplored. We report 332 validated de novo structural changes identified in whole genomes of 250 families, including complex indels, retrotransposon insertions, and interchromosomal events. These data indicate a mutation rate of 2.94 indels (1-20 bp) and 0.16 SVs (>20 bp) per generation. De novo structural changes affect on average 4.1 kbp of genomic sequence and 29 coding bases per generation, which is 91 and 52 times more nucleotides than de novo substitutions, respectively. This contrasts with the equal genomic footprint of inherited SVs and substitutions. An excess of structural changes originated on paternal haplotypes. Additionally, we observed a nonuniform distribution of de novo SVs across offspring. These results reveal the importance of different mutational mechanisms to changes in human genome structure across generations.
© 2015 Kloosterman et al.; Published by Cold Spring Harbor Laboratory Press.
Figures






Similar articles
- Haplotype-resolved and integrated genome analysis of the cancer cell line HepG2.Zhou B, Ho SS, Greer SU, Spies N, Bell JM, Zhang X, Zhu X, Arthur JG, Byeon S, Pattni R, Saha I, Huang Y, Song G, Perrin D, Wong WH, Ji HP, Abyzov A, Urban AE.Zhou B, et al.Nucleic Acids Res. 2019 May 7;47(8):3846-3861. doi: 10.1093/nar/gkz169.Nucleic Acids Res. 2019.PMID:30864654Free PMC article.
- Comprehensive de novo mutation discovery with HiFi long-read sequencing.Kucuk E, van der Sanden BPGH, O'Gorman L, Kwint M, Derks R, Wenger AM, Lambert C, Chakraborty S, Baybayan P, Rowell WJ, Brunner HG, Vissers LELM, Hoischen A, Gilissen C.Kucuk E, et al.Genome Med. 2023 May 8;15(1):34. doi: 10.1186/s13073-023-01183-6.Genome Med. 2023.PMID:37158973Free PMC article.
- Frequency and Complexity of De Novo Structural Mutation in Autism.Brandler WM, Antaki D, Gujral M, Noor A, Rosanio G, Chapman TR, Barrera DJ, Lin GN, Malhotra D, Watts AC, Wong LC, Estabillo JA, Gadomski TE, Hong O, Fajardo KV, Bhandari A, Owen R, Baughn M, Yuan J, Solomon T, Moyzis AG, Maile MS, Sanders SJ, Reiner GE, Vaux KK, Strom CM, Zhang K, Muotri AR, Akshoomoff N, Leal SM, Pierce K, Courchesne E, Iakoucheva LM, Corsello C, Sebat J.Brandler WM, et al.Am J Hum Genet. 2016 Apr 7;98(4):667-79. doi: 10.1016/j.ajhg.2016.02.018. Epub 2016 Mar 24.Am J Hum Genet. 2016.PMID:27018473Free PMC article.
- Geographic distribution and adaptive significance of genomic structural variants: an anthropological genetics perspective.Eaaswarkhanth M, Pavlidis P, Gokcumen O.Eaaswarkhanth M, et al.Hum Biol. 2014 Fall;86(4):260-75. doi: 10.13110/humanbiology.86.4.0260.Hum Biol. 2014.PMID:25959693Review.
- The repeatability of genome-wide mutation rate and spectrum estimates.Behringer MG, Hall DW.Behringer MG, et al.Curr Genet. 2016 Aug;62(3):507-12. doi: 10.1007/s00294-016-0573-7. Epub 2016 Feb 26.Curr Genet. 2016.PMID:26919990Free PMC article.Review.
Cited by
- Prioritization of genes driving congenital phenotypes of patients with de novo genomic structural variants.Middelkamp S, Vlaar JM, Giltay J, Korzelius J, Besselink N, Boymans S, Janssen R, de la Fonteijne L, van Binsbergen E, van Roosmalen MJ, Hochstenbach R, Giachino D, Talkowski ME, Kloosterman WP, Cuppen E.Middelkamp S, et al.Genome Med. 2019 Dec 4;11(1):79. doi: 10.1186/s13073-019-0692-0.Genome Med. 2019.PMID:31801603Free PMC article.
- Megabase Length Hypermutation Accompanies Human Structural Variation at 17p11.2.Beck CR, Carvalho CMB, Akdemir ZC, Sedlazeck FJ, Song X, Meng Q, Hu J, Doddapaneni H, Chong Z, Chen ES, Thornton PC, Liu P, Yuan B, Withers M, Jhangiani SN, Kalra D, Walker K, English AC, Han Y, Chen K, Muzny DM, Ira G, Shaw CA, Gibbs RA, Hastings PJ, Lupski JR.Beck CR, et al.Cell. 2019 Mar 7;176(6):1310-1324.e10. doi: 10.1016/j.cell.2019.01.045. Epub 2019 Feb 28.Cell. 2019.PMID:30827684Free PMC article.
- New insights into the generation and role of de novo mutations in health and disease.Acuna-Hidalgo R, Veltman JA, Hoischen A.Acuna-Hidalgo R, et al.Genome Biol. 2016 Nov 28;17(1):241. doi: 10.1186/s13059-016-1110-1.Genome Biol. 2016.PMID:27894357Free PMC article.Review.
- Characterization and distribution of de novo mutations in the zebra finch.Liang X, Yang S, Wang D, Knief U.Liang X, et al.Commun Biol. 2024 Oct 2;7(1):1243. doi: 10.1038/s42003-024-06945-5.Commun Biol. 2024.PMID:39358581Free PMC article.
- Population-Scale Sequencing Data Enable Precise Estimates of Y-STR Mutation Rates.Willems T, Gymrek M, Poznik GD, Tyler-Smith C; 1000 Genomes Project Chromosome Y Group; Erlich Y.Willems T, et al.Am J Hum Genet. 2016 May 5;98(5):919-933. doi: 10.1016/j.ajhg.2016.04.001. Epub 2016 Apr 25.Am J Hum Genet. 2016.PMID:27126583Free PMC article.
References
- Batista DAS, Pai GS, Stetten G. 1994. Molecular analysis of a complex chromosomal rearrangement and a review of familial cases. Am J Med Genet 53: 255–263. - PubMed
- Belancio VP, Hedges DJ, Deininger P. 2008. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res 18: 343–358. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources