Hybrid spreading mechanisms and T cell activation shape the dynamics of HIV-1 infection
- PMID:25837979
- PMCID: PMC4383537
- DOI: 10.1371/journal.pcbi.1004179
Hybrid spreading mechanisms and T cell activation shape the dynamics of HIV-1 infection
Abstract
HIV-1 can disseminate between susceptible cells by two mechanisms: cell-free infection following fluid-phase diffusion of virions and by highly-efficient direct cell-to-cell transmission at immune cell contacts. The contribution of this hybrid spreading mechanism, which is also a characteristic of some important computer worm outbreaks, to HIV-1 progression in vivo remains unknown. Here we present a new mathematical model that explicitly incorporates the ability of HIV-1 to use hybrid spreading mechanisms and evaluate the consequences for HIV-1 pathogenenesis. The model captures the major phases of the HIV-1 infection course of a cohort of treatment naive patients and also accurately predicts the results of the Short Pulse Anti-Retroviral Therapy at Seroconversion (SPARTAC) trial. Using this model we find that hybrid spreading is critical to seed and establish infection, and that cell-to-cell spread and increased CD4+ T cell activation are important for HIV-1 progression. Notably, the model predicts that cell-to-cell spread becomes increasingly effective as infection progresses and thus may present a considerable treatment barrier. Deriving predictions of various treatments' influence on HIV-1 progression highlights the importance of earlier intervention and suggests that treatments effectively targeting cell-to-cell HIV-1 spread can delay progression to AIDS. This study suggests that hybrid spreading is a fundamental feature of HIV infection, and provides the mathematical framework incorporating this feature with which to evaluate future therapeutic strategies.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures






Similar articles
- Immune signatures for HIV-1 and HIV-2 induced CD4+T cell dysregulation in an Indian cohort.Salwe S, Singh A, Padwal V, Velhal S, Nagar V, Patil P, Deshpande A, Patel V.Salwe S, et al.BMC Infect Dis. 2019 Feb 11;19(1):135. doi: 10.1186/s12879-019-3743-7.BMC Infect Dis. 2019.PMID:30744575Free PMC article.
- A hybrid stochastic-deterministic computational model accurately describes spatial dynamics and virus diffusion in HIV-1 growth competition assay.Immonen T, Gibson R, Leitner T, Miller MA, Arts EJ, Somersalo E, Calvetti D.Immonen T, et al.J Theor Biol. 2012 Nov 7;312:120-32. doi: 10.1016/j.jtbi.2012.07.005. Epub 2012 Jul 17.J Theor Biol. 2012.PMID:22814476
- Anti-Tat immunity defines CD4+ T-cell dynamics in people living with HIV on long-term cART.Tripiciano A, Picconi O, Moretti S, Sgadari C, Cafaro A, Francavilla V, Arancio A, Paniccia G, Campagna M, Pavone-Cossut MR, Sighinolfi L, Latini A, Mercurio VS, Pietro MD, Castelli F, Saracino A, Mussini C, Perri GD, Galli M, Nozza S, Ensoli F, Monini P, Ensoli B.Tripiciano A, et al.EBioMedicine. 2021 Apr;66:103306. doi: 10.1016/j.ebiom.2021.103306. Epub 2021 Apr 7.EBioMedicine. 2021.PMID:33839064Free PMC article.
- Innate immune recognition of HIV-1.Iwasaki A.Iwasaki A.Immunity. 2012 Sep 21;37(3):389-98. doi: 10.1016/j.immuni.2012.08.011.Immunity. 2012.PMID:22999945Free PMC article.Review.
- T-cell exhaustion in HIV infection.Fenwick C, Joo V, Jacquier P, Noto A, Banga R, Perreau M, Pantaleo G.Fenwick C, et al.Immunol Rev. 2019 Nov;292(1):149-163. doi: 10.1111/imr.12823.Immunol Rev. 2019.PMID:31883174Free PMC article.Review.
Cited by
- Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures.Imle A, Kumberger P, Schnellbächer ND, Fehr J, Carrillo-Bustamante P, Ales J, Schmidt P, Ritter C, Godinez WJ, Müller B, Rohr K, Hamprecht FA, Schwarz US, Graw F, Fackler OT.Imle A, et al.Nat Commun. 2019 May 13;10(1):2144. doi: 10.1038/s41467-019-09879-3.Nat Commun. 2019.PMID:31086185Free PMC article.
- Estimating the basic reproduction number of a pathogen in a single host when only a single founder successfully infects.Patel V, Spouge JL.Patel V, et al.PLoS One. 2020 Jan 10;15(1):e0227127. doi: 10.1371/journal.pone.0227127. eCollection 2020.PLoS One. 2020.PMID:31923263Free PMC article.
- Modeling Viral Spread.Graw F, Perelson AS.Graw F, et al.Annu Rev Virol. 2016 Sep 29;3(1):555-572. doi: 10.1146/annurev-virology-110615-042249. Epub 2016 Aug 31.Annu Rev Virol. 2016.PMID:27618637Free PMC article.Review.
- Distinct functions for the membrane-proximal ectodomain region (MPER) of HIV-1 gp41 in cell-free and cell-cell viral transmission and cell-cell fusion.Narasimhulu VGS, Bellamy-McIntyre AK, Laumaea AE, Lay CS, Harrison DN, King HAD, Drummer HE, Poumbourios P.Narasimhulu VGS, et al.J Biol Chem. 2018 Apr 20;293(16):6099-6120. doi: 10.1074/jbc.RA117.000537. Epub 2018 Mar 1.J Biol Chem. 2018.PMID:29496992Free PMC article.
- A threshold delay model of HIV infection of newborn infants through breastfeeding.Teslya A, Qesmi R, Wu J, Heffernan JM.Teslya A, et al.Infect Dis Model. 2019 May 16;4:188-214. doi: 10.1016/j.idm.2019.05.001. eCollection 2019.Infect Dis Model. 2019.PMID:31194190Free PMC article.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials