Engineering Sugar Utilization and Microbial Tolerance toward Lignocellulose Conversion
- PMID:25741507
- PMCID: PMC4332379
- DOI: 10.3389/fbioe.2015.00017
Engineering Sugar Utilization and Microbial Tolerance toward Lignocellulose Conversion
Abstract
Production of fuels and chemicals through a fermentation-based manufacturing process that uses renewable feedstock such as lignocellulosic biomass is a desirable alternative to petrochemicals. Although it is still in its infancy, synthetic biology offers great potential to overcome the challenges associated with lignocellulose conversion. In this review, we will summarize the identification and optimization of synthetic biological parts used to enhance the utilization of lignocellulose-derived sugars and to increase the biocatalyst tolerance for lignocellulose-derived fermentation inhibitors. We will also discuss the ongoing efforts and future applications of synthetic integrated biological systems used to improve lignocellulose conversion.
Keywords: furan aldehydes; lignocellulose; metabolic engineering; synthetic biology; xylose.
Figures




Similar articles
- Bioprospecting of Native Efflux Pumps To Enhance Furfural Tolerance in EthanologenicEscherichia coli.Kurgan G, Panyon LA, Rodriguez-Sanchez Y, Pacheco E, Nieves LM, Mann R, Nielsen DR, Wang X.Kurgan G, et al.Appl Environ Microbiol. 2019 Mar 6;85(6):e02985-18. doi: 10.1128/AEM.02985-18. Print 2019 Mar 15.Appl Environ Microbiol. 2019.PMID:30635383Free PMC article.
- Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives.Francois JM, Alkim C, Morin N.Francois JM, et al.Biotechnol Biofuels. 2020 Jul 8;13:118. doi: 10.1186/s13068-020-01744-6. eCollection 2020.Biotechnol Biofuels. 2020.PMID:32670405Free PMC article.Review.
- Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology.Jarboe LR, Zhang X, Wang X, Moore JC, Shanmugam KT, Ingram LO.Jarboe LR, et al.J Biomed Biotechnol. 2010;2010:761042. doi: 10.1155/2010/761042. Epub 2010 Apr 6.J Biomed Biotechnol. 2010.PMID:20414363Free PMC article.Review.
- Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals.Bilal M, Nawaz MZ, Iqbal HMN, Hou J, Mahboob S, Al-Ghanim KA, Cheng H.Bilal M, et al.Protein Pept Lett. 2018;25(2):108-119. doi: 10.2174/0929866525666180122105835.Protein Pept Lett. 2018.PMID:29359652Review.
- Multiomic Fermentation Using Chemically Defined Synthetic Hydrolyzates Revealed Multiple Effects of Lignocellulose-Derived Inhibitors on Cell Physiology and Xylose Utilization inZymomonas mobilis.Zhang Y, Vera JM, Xie D, Serate J, Pohlmann E, Russell JD, Hebert AS, Coon JJ, Sato TK, Landick R.Zhang Y, et al.Front Microbiol. 2019 Nov 7;10:2596. doi: 10.3389/fmicb.2019.02596. eCollection 2019.Front Microbiol. 2019.PMID:31787963Free PMC article.
Cited by
- Catabolic Division of Labor Enhances Production of D-Lactate and Succinate From Glucose-Xylose Mixtures in EngineeredEscherichia coli Co-culture Systems.Flores AD, Choi HG, Martinez R, Onyeabor M, Ayla EZ, Godar A, Machas M, Nielsen DR, Wang X.Flores AD, et al.Front Bioeng Biotechnol. 2020 May 5;8:329. doi: 10.3389/fbioe.2020.00329. eCollection 2020.Front Bioeng Biotechnol. 2020.PMID:32432089Free PMC article.
- Engineering prokaryotic regulator IrrE to enhance stress tolerance in budding yeast.Wang L, Wang X, He ZQ, Zhou SJ, Xu L, Tan XY, Xu T, Li BZ, Yuan YJ.Wang L, et al.Biotechnol Biofuels. 2020 Nov 30;13(1):193. doi: 10.1186/s13068-020-01833-6.Biotechnol Biofuels. 2020.PMID:33292418Free PMC article.
- Unraveling the mechanism of furfural tolerance in engineeredPseudomonas putida by genomics.Zou L, Jin X, Tao Y, Zheng Z, Ouyang J.Zou L, et al.Front Microbiol. 2022 Oct 20;13:1035263. doi: 10.3389/fmicb.2022.1035263. eCollection 2022.Front Microbiol. 2022.PMID:36338095Free PMC article.
- Parallel experimental evolution reveals a novel repressive control of GalP on xylose fermentation in Escherichia coli.Kurgan G, Sievert C, Flores A, Schneider A, Billings T, Panyon L, Morris C, Taylor E, Kurgan L, Cartwright R, Wang X.Kurgan G, et al.Biotechnol Bioeng. 2019 Aug;116(8):2074-2086. doi: 10.1002/bit.27004. Epub 2019 May 21.Biotechnol Bioeng. 2019.PMID:31038200Free PMC article.
- Industrial production, application, microbial biosynthesis and degradation of furanic compound, hydroxymethylfurfural (HMF).Wang Y, Brown CA, Chen R.Wang Y, et al.AIMS Microbiol. 2018 Mar 21;4(2):261-273. doi: 10.3934/microbiol.2018.2.261. eCollection 2018.AIMS Microbiol. 2018.PMID:31294214Free PMC article.Review.
References
- Almeida J. R., Roder A., Modig T., Laadan B., Liden G., Gorwa-Grauslund M. F. (2008). NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 78, 939–945.10.1007/s00253-008-1364-y. - DOI - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources