Mechanical sensitivity reveals evolutionary dynamics of mechanical systems
- PMID:25716791
- PMCID: PMC4375878
- DOI: 10.1098/rspb.2014.3088
Mechanical sensitivity reveals evolutionary dynamics of mechanical systems
Abstract
A classic question in evolutionary biology is how form-function relationships promote or limit diversification. Mechanical metrics, such as kinematic transmission (KT) in linkage systems, are useful tools for examining the evolution of form and function in a comparative context. The convergence of disparate systems on equivalent metric values (mechanical equivalence) has been highlighted as a source of potential morphological diversity under the assumption that morphology can evolve with minimal impact on function. However, this assumption does not account for mechanical sensitivity-the sensitivity of the metric to morphological changes in individual components of a structure. We examined the diversification of a four-bar linkage system in mantis shrimp (Stomatopoda), and found evidence for both mechanical equivalence and differential mechanical sensitivity. KT exhibited variable correlations with individual linkage components, highlighting the components that influence KT evolution, and the components that are free to evolve independently from KT and thereby contribute to the observed pattern of mechanical equivalence. Determining the mechanical sensitivity in a system leads to a deeper understanding of both functional convergence and morphological diversification. This study illustrates the importance of multi-level analyses in delineating the factors that limit and promote diversification in form-function systems.
Keywords: biomechanics; evolution; mechanical equivalence; mechanical sensitivity.
© 2015 The Author(s) Published by the Royal Society. All rights reserved.
Figures





Similar articles
- Mechanical sensitivity and the dynamics of evolutionary rate shifts in biomechanical systems.Muñoz MM, Anderson PS, Patek SN.Muñoz MM, et al.Proc Biol Sci. 2017 Jan 25;284(1847):20162325. doi: 10.1098/rspb.2016.2325.Proc Biol Sci. 2017.PMID:28100817Free PMC article.
- Modularity and rates of evolutionary change in a power-amplified prey capture system.Claverie T, Patek SN.Claverie T, et al.Evolution. 2013 Nov;67(11):3191-207. doi: 10.1111/evo.12185. Epub 2013 Jul 4.Evolution. 2013.PMID:24152002
- Common evolutionary trends underlie the four-bar linkage systems of sunfish and mantis shrimp.Hu Y, Nelson-Maney N, Anderson PSL.Hu Y, et al.Evolution. 2017 May;71(5):1397-1405. doi: 10.1111/evo.13208. Epub 2017 Mar 17.Evolution. 2017.PMID:28230239
- From Telson to Attack in Mantis Shrimp: Bridging Biomechanics and Behavior in Crustacean Contests.deVries MS, Lowder KB, Taylor JRA.deVries MS, et al.Integr Comp Biol. 2021 Sep 8;61(2):643-654. doi: 10.1093/icb/icab064.Integr Comp Biol. 2021.PMID:33974067Review.
- Making a point: shared mechanics underlying the diversity of biological puncture.Anderson PSL.Anderson PSL.J Exp Biol. 2018 Nov 16;221(Pt 22):jeb187294. doi: 10.1242/jeb.187294.J Exp Biol. 2018.PMID:30446527Review.
Cited by
- What Can Computational Modeling Tell Us about the Diversity of Odor-Capture Structures in the Pancrustacea?Waldrop LD, He Y, Khatri S.Waldrop LD, et al.J Chem Ecol. 2018 Dec;44(12):1084-1100. doi: 10.1007/s10886-018-1017-2. Epub 2018 Sep 21.J Chem Ecol. 2018.PMID:30242545
- A physical model of mantis shrimp for exploring the dynamics of ultrafast systems.Steinhardt E, Hyun NP, Koh JS, Freeburn G, Rosen MH, Temel FZ, Patek SN, Wood RJ.Steinhardt E, et al.Proc Natl Acad Sci U S A. 2021 Aug 17;118(33):e2026833118. doi: 10.1073/pnas.2026833118.Proc Natl Acad Sci U S A. 2021.PMID:34389671Free PMC article.
- Extreme and rapid bursts of functional adaptations shape bite force in amniotes.Sakamoto M, Ruta M, Venditti C.Sakamoto M, et al.Proc Biol Sci. 2019 Jan 16;286(1894):20181932. doi: 10.1098/rspb.2018.1932.Proc Biol Sci. 2019.PMID:30963871Free PMC article.
- Morphological evolution of bird wings follows a mechanical sensitivity gradient determined by the aerodynamics of flapping flight.Rader JA, Hedrick TL.Rader JA, et al.Nat Commun. 2023 Nov 18;14(1):7494. doi: 10.1038/s41467-023-43108-2.Nat Commun. 2023.PMID:37980422Free PMC article.
- A Tunable, Simplified Model for Biological Latch Mediated Spring Actuated Systems.Cook A, Pandhigunta K, Acevedo MA, Walker A, Didcock RL, Castro JT, O'Neill D, Acharya R, Bhamla MS, Anderson PSL, Ilton M.Cook A, et al.Integr Org Biol. 2022 Jul 30;4(1):obac032. doi: 10.1093/iob/obac032. eCollection 2022.Integr Org Biol. 2022.PMID:36060863Free PMC article.
References
- Cuvier G. 1798. Tableau élémentaire de l'histoire naturelle des animaux. Paris, France: Baudouin, Imprimeur.
- Seilacher A. 1970. Arbeitskonzept zur konstruktions-morphologie. Lethaia 3, 393–396. (10.1111/j.1502-3931.1970.tb00830.x) - DOI
- Lauder GV. 1991. Biomechanics and evolution: integrating physical and historical biology in the study of complex systems. In Biomechanics in evolution (eds Rayner JMV, Wootton RJ.), pp. 1–19. Cambridge, UK: Cambridge University Press.
- Barel CDN. 1993. Concepts of an architectonic approach to transformation morphology. Acta Biotheoretica 41, 345–381. (10.1007/BF00709371) - DOI
- Koehl MAR. 1996. When does morphology matter? Annu. Rev. Ecol. Syst. 27, 501–542. (10.1146/annurev.ecolsys.27.1.501) - DOI
Publication types
MeSH terms
Associated data
LinkOut - more resources
Full Text Sources
Other Literature Sources